1. Berni, J.A.J., P.J.Z. Tejada, L. Suárez and E. Fereres. 2009. Thermal and narrow-band multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle, IEEE Transactions on Geoscience and Remote Sensing, 47(3): 722-738. [
DOI:10.1109/TGRS.2008.2010457]
2. Clemens, S.R. 2012. Procedures for correcting digital camera imagery acquired by the AggieAir remote sensing platform. Utah State University, 47.
3. Cornforth, W., C. Nichol and J. Suarez. 2010. Remote sensing for practical forestry: Arboriculture to UAVs, University of Edinburgh, 24.
4. Gitelson, A. 2002. Vegetation and soil lines in visible spectral space: a concept and technique for remote estimation of vegetation fraction. International Journal of Remote Sensing, 33(2002): 2562-2537. [
DOI:10.1080/01431160110107806]
5. González, V., P.J.Z. Tejada, J.A. Berni, L. Suárez, D. Goldhamer and E. Fer-eres. 2012. Almond tree canopy temperature reveals intra-crown variability that is water stress-dependent. Agricultural and Forest Meteorology, 154-155, 156-165. [
DOI:10.1016/j.agrformet.2011.11.004]
6. Hague, T., N. Tillet and H. Wheeler. 2006. Automated crop and weed monitoring in widely spaced cereals. Precision Agriculture, 1(1): 95-113. [
DOI:10.1007/s11119-005-6787-1]
7. Hunt, E.R., M. Cavigelli, C.S.T. Daughtry, J.E. McMurtrey and C.L. Walthall. 2005. Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status, Precis. Agric, 6: 359-378. [
DOI:10.1007/s11119-005-2324-5]
8. Hunt, E.R., W.D. Hively, C.S. Daughtry, G.W. McCarty, S.J. Fujikawa, T. Ng, M. Tranchitella, D.S. Linden and D.W. Yoel. 2008. Remote sensing of crop leaf area index using unmanned airborne vehicles, In: In Proceedings of the Pecora 17Symposium, Denver, CO.
9. Jannoura, R., K. Brinkmann, D. Uteau, C. Bruns and R.G. Joergensen. 2015. Monitoring of crop biomass using true colour aerial photographs taken from a remote controlled hexacopter. Biosyst. Eng, 129: 341-351. [
DOI:10.1016/j.biosystemseng.2014.11.007]
10. Kataoka, T., T. Kaneko, H. Okamoto and S. Hata. 2003. Crop growth estimation system using machine vision. In The 2003 IEEE/ASME international conference on advanced intelligent mechatronics.
11. Neto, J.C. 2004. A combined statistical-soft computing approach for classification and mapping weed pecies in minimum tillage systems. Lincoln, NE: University of Nebraska.
12. Rango, A., A. Laliberte, J.E. Herrick, C. Winters, K. Havstad, C. Steele and D. Browning. 2009. Unmanned aerial vehicle-based remote sensing for rangeland assessment, monitoring and management, J. Appl. Remote Sens, 3, Article No: 033542. [
DOI:10.1117/1.3216822]
13. Tejada, P.J.Z., M.L. Guillén-Climent, R. Hernández-Clemente, A. Catalina, M.R. González and P. Martín. 2013. Estimating leaf carotenoid content in vineyards using high resolution hyperspectral imagery acquired from an unmanned aerial vehicle, Agricultural and Forest Meteorology, 171-172, 281-294. [
DOI:10.1016/j.agrformet.2012.12.013]
14. Torres-Sánchez, J., J.M. Pena, A.I. De Castro and F. López-Granados. 2014. Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV, Comp. Electron. Agric, 103: 104-113. [
DOI:10.1016/j.compag.2014.02.009]
15. Woebbecke, D.M., G.E. Meyer, K. Von Bargen and D.A. Mortensen. 1995. Shape features for identifying young weeds using image analysis. Transactions of the American Society of Agricultural Engineers, 38(1): 271-281. [
DOI:10.13031/2013.27839]