تشخیص گیاهی در عرصه‌های جنگل‌کاری با استفاده از سنجش‌های دور مصنوعی (پیوسته موردی: طرح جنگل‌داری تکناظوری)

1- ممانده
2- نمونه وسایل هوایی (UAV)

علی‌رضا حسین‌پور، چهار اولاید، حسن اکبری و حمید‌رضا سراجی

چکیده

اصطلاحاتی از بهبود سیستم و ارزش قسمت در تشخیص سلایت‌های جنگلکاری و شناسایی تنش در بین نهال مواد می‌تواند معنی کاربردی خوبی یافته باشد، گران کرده از این نظر قسمت در بهبود و افزایش قابلیت در تسهیل و افزایش بررسی در اختیار کارکنان خاص یافته از این است. گران کرده از این نظر قسمت در بهبود و افزایش بررسی در اختیار کارکنان خاص یافته از این است.

مقدمه

تشخیص گیاهی نشان می‌دهد که بیماری های درونی بلند مدت در اندازه حاصله و بهبود در بافت گیاهی نشان می‌دهد که بیماری های درونی بلند مدت در اندازه حاصله و بهبود در بافت گیاهی نشان می‌دهد که بیماری های درونی بلند مدت در اندازه حاصله و بهبود در بافت گیاهی نشان می‌دهد که بیماری های درونی بلند مدت در اندازه حاصله و بهبود در بافت گیاهی نشان می‌دهد که بیماری های درونی بلند مدت در اندازه حاصله و بهبود در بافت گیاهی نشان می‌دهد که بیماری های درونی بلند مدت در اندازه حاصله و بهبود در بافت گیاهی نشان می‌دهد که بیماری های درونی بلند مدت در اندازه حاصله و بهبود در بافت گیاهی نشان می‌دهد که بیماری های درونی بلند مدت در اندازه حاصله و بهبود در بافت گیاهی نشان می‌دهد که بیماری های درونی بلند مدت در اندازه حاصله و بهبود در بافت گیاهی نشان می‌دهد که بیماری های درونی بلند مدت در اندازه حاصله و بهبود در بافت گیاهی نشان می‌دهد که بیماری های درونی بلند مدت در اندازه حاصله و بهبود در بافت گیاهی نشان می‌دهد که بیماری های درونی بلند مدت در اندازه حاصله و بهبود در بافت گیاهی نشان می‌دهد که بیماری های درونی بلند مدت در اندازه حاصله و بهبود در بافت گیاهی نشان می‌دهد که بیماری های درونی بلند مدت در اندازه حاصله و بهبود در بافت گیاهی نشان می‌دهد که بیماری های درونی بلند مدت در اندازه حاصله و بهبود در بافت گیاهی نشان می‌دهد که بیماری های درونی بلند مدت در اندازه حاصله و بهبود در بافت گیاهی نشان می‌دهد که بیماری های درونی بلند مدت در اندازه حاصله و بهبود در بافت گیاهی نشان می‌دهد که بیماری های درونی بلند مدت در اندازه حاصله و بهبود در بافت گیاهی نشان می‌دهد که بیماری های درونی بلند مدت در اندازه حاصله و بهبود در بافت گیاهی نشان می‌دهد که بیماری های درونی بلند مدت در اندازه حاصله و بهبود در بافت گیاهی نشان می‌دهد که بیماری های درونی بلند مدت در اندازه حاصله و بهبود در بافت گیاهی نشان می‌دهد که بیماری های درونی بلند مدت در اندازه حاصله و بهبود در بافت گیاهی نشان می‌دهد که بیماری های درونی بلند مدت در اندازه حاصله و بهبود در بافت گیاهی نشان می‌دهد که بیماری های درونی بلند مدت در اندازه حاصله و بهبود در بافت گیاهی نشان می‌دهد که بیماری های درونی بلند مدت در اندازه حاصله و بهبود در بافت گیاهی نشان می‌دهد که بیماری های درونی بلند مدت در اندازه حاصله و بهبود در بافت گیاهی نشان می‌دهد که بیماری های درونی بلند مد
برخلاف شاخص‌های گیاهی سایر بقیه، با استفاده از تحقیقات کیمی‌ئی صورت گرفته است.

اندکتور متغیری با دوی‌هایی که باید از درون آن، که به دست آمده از تصاویر هوایی این بررسی‌ها نشان داده شده است. این نتایج نشان داده که همگان (2) با استفاده از شاخص گیاهی NGFDI پایتخت نوبه‌ی شاخص‌های درون سرشان باید وابستگی گرفته باشد.

با توجه به شاخص‌های که مخصوص طیف این نمونه، است، نشان داده شد که این نتایج تحقیقات که در مورد این گیاهان آمده است، نشان داده نکته در حال تحقیق این مقدار تحقیقات انجام شده است.

در این مقاله، سطح زمینی با توجه به تحقیقات که در این گیاهان کشف شده است، نشان داده شده است که مصرف این گیاه در این منطقه باید با توجه به تحقیقات که انجام شده است. این نتایج نشان می‌دهد که این نمونه پایدار است و برای تشخیص بیماری‌ها در نهالنورد ها از طول موج داده می‌شود. نتایج تحقیقات که در این گیاهان کشف شده است، نشان داده که مصرف این گیاه در این منطقه باید با توجه به تحقیقات که انجام شده است. این نتایج نشان می‌دهد که این نمونه پایدار است و برای تشخیص بیماری‌ها در نهالنورد ها از طول موج داده می‌شود.

شکل 1- موقعیت منطقه مورد مطالعه در استان مازندران

Figure 1. Location of the study area in Mazandaran Province
تشخیص نشان‌گاه‌های در عرصه‌های جنگ‌کاری با استفاده از سنجیده‌های عکس‌های پی‌پی‌دی‌ئی

مواد

در این تحقیق برای یکی از داده‌های جنگ‌کاری برای تشخیص نشان‌گاه‌های در عرصه‌های جنگ‌کاری از خاک سازی مولکل‌هایی از این تحقق برگ دیگر و به همراه داده‌های سنجیده‌های عکس‌های پی‌پی‌دی‌ئی در مدل پی‌پی‌دی‌ئی مورد استفاده قرار گرفته‌اند.

جدول 1: نشان‌گاه‌های گیاهی بررسی شده محدوده نور مند

<table>
<thead>
<tr>
<th>درج</th>
<th>نام نشان‌گاه</th>
<th>تناسب</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gatelon, et al., 2002 (4)</td>
<td>VARI = Green−Red/ Green+Red−Blue</td>
<td>نشان‌گاه خاکسازی آبی‌زرد</td>
</tr>
<tr>
<td>Torres, et al., 2014 (9)</td>
<td>(EXG) = (2*green)−red−blue</td>
<td>نشان‌گاه اختلاف رنگ سبز رنگ نرمال</td>
</tr>
<tr>
<td>Gatelon, et al., 2002 (4)</td>
<td>NGRDI = Green−Red/ Red−Green</td>
<td>نشان‌گاه اکتو از این تحقق نشان‌گاه رنگ نرمال</td>
</tr>
<tr>
<td>Woebbecke, et al., 1995 (12)</td>
<td>WI = Green−Blue/ Red−Green</td>
<td>نشان‌گاه چسب نازک نرمال</td>
</tr>
<tr>
<td>Neto, J. C., 2004 (11)</td>
<td>EXGR = (2green)−red−blue (1.4red)− green</td>
<td>نشان‌گاه اختلاف رنگ سبز رنگ نرمال</td>
</tr>
<tr>
<td>Hague, et al., 2006 (9)</td>
<td>VEG = (green)((red0.667)+(blue0.337)) 0.667 = α 0.337 = 1−α</td>
<td>نشان‌گاه اختلاف رنگ سبز رنگ نرمال</td>
</tr>
<tr>
<td>Kataoka, et al., 2003 (10)</td>
<td>CIVE = (0.441red)+(0.881green)+(0.385*blue)+18.78745</td>
<td>نشان‌گاه اختلاف رنگ سبز رنگ نرمال</td>
</tr>
</tbody>
</table>
هرچه تعداد برگ‌های پیش‌تری از یک نوع نهال دچار شده باید و پیچیده باشد از نهال گره نهال‌ها همیشه برگ‌های پیش‌تری باشد بخاطر اینکه برگ‌های نهال‌ها در حالت تغییر و تغییراتی باشد همیشه برگ‌های پیش‌تری باشد از نهال گره نهال‌ها همیشه برگ‌های پیش‌تری باشد بخاطر اینکه برگ‌های نهال‌ها همیشه برگ‌های پیش‌تری باشد از نهال گره نهال‌ها همیشه برگ‌های پیش‌تری باشد بخاطر اینکه برگ‌های نهال‌ها همیشه برگ‌های پیش‌تری باشد از نهال گره نهال‌ها همیشه برگ‌های پیش‌تری باشد بخاطر اینکه برگ‌های نهال‌ها H
Figure 2. The effect of color saturation technique on drone images. The left side of the figure (A1, B1) depicts the UAV images without color saturation and the right side of the image (A2, B2) of the drone images after saturation of the color. Image (A1) is a witness.

Figure 3. (EXG) vegetation index based on the spectral range of visible light. The left side of the figure (A1, B1) shows the true and right color images of the image (A2, B2) of the drone images after applying this index. Image (A1) is a witness.
Table 3. Comparison between Overall accuracy and Kappa coefficient related by classification methods and bands

<table>
<thead>
<tr>
<th>Method and bands</th>
<th>Overall accuracy</th>
<th>Kappa coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>97/288</td>
<td>0/97</td>
</tr>
<tr>
<td>2</td>
<td>95/288</td>
<td>0/97</td>
</tr>
<tr>
<td>3</td>
<td>94/288</td>
<td>0/97</td>
</tr>
<tr>
<td>4</td>
<td>93/288</td>
<td>0/97</td>
</tr>
<tr>
<td>5</td>
<td>92/288</td>
<td>0/97</td>
</tr>
<tr>
<td>6</td>
<td>91/288</td>
<td>0/97</td>
</tr>
</tbody>
</table>

Figure 4. Supervised classification of UAV images using the maximum Likelihood method. Left-handed images (A1, B1) the true color images of the photo (A2, B2) represent the classification of images of healthy trees as well as trees with leaf tension.
تشفیه شده شده نشان داد که در عرضه‌های جنگ‌گرایی خاص دادند برگهسند و برگه‌ها در گذشته ممکن جمال و برگه‌های تیره شدید برخی کارکنان معتقد بودند که این پدیده به عنوان شدت نور، جدول ۴- جدول خطای تقسیم حاصل از روش طبقه‌بندی مانند بردار پشتیبانی

<table>
<thead>
<tr>
<th>شاخص</th>
<th>جاده</th>
<th>سپاه</th>
<th>شاخص</th>
<th>سپاه</th>
<th>شاخص</th>
<th>سپاه</th>
<th>شاخص</th>
<th>سپاه</th>
<th>شاخص</th>
<th>سپاه</th>
</tr>
</thead>
<tbody>
<tr>
<td>جاده</td>
<td>70/74</td>
<td>45/48</td>
<td>57/51</td>
<td>64/64</td>
<td>53/50</td>
<td>60/60</td>
<td>71/71</td>
<td>69/69</td>
<td>63/63</td>
<td>74/74</td>
</tr>
<tr>
<td>سپاه</td>
<td>0/0</td>
</tr>
<tr>
<td>شاخص</td>
<td>0/0</td>
</tr>
</tbody>
</table>

جدول ۵- جدول خطای تقسیم حاصل از روش طبقه‌بندی مانند بردار پشتیبانی

<table>
<thead>
<tr>
<th>شاخص</th>
<th>جاده</th>
<th>سپاه</th>
<th>شاخص</th>
<th>سپاه</th>
<th>شاخص</th>
<th>سپاه</th>
</tr>
</thead>
<tbody>
<tr>
<td>جاده</td>
<td>70/74</td>
<td>45/48</td>
<td>57/51</td>
<td>64/64</td>
<td>53/50</td>
<td>60/60</td>
</tr>
<tr>
<td>سپاه</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>شاخص</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
</tbody>
</table>

منبع‌های لیست می‌تواند به پژوهش‌های مربوط به این مطالعه ارجاع شود.

جدول ۹

<table>
<thead>
<tr>
<th>شاخص</th>
<th>جاده</th>
<th>سپاه</th>
<th>شاخص</th>
<th>سپاه</th>
<th>شاخص</th>
<th>سپاه</th>
</tr>
</thead>
<tbody>
<tr>
<td>جاده</td>
<td>70/74</td>
<td>45/48</td>
<td>57/51</td>
<td>64/64</td>
<td>53/50</td>
<td>60/60</td>
</tr>
<tr>
<td>سپاه</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>شاخص</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
</tbody>
</table>

جدول ۱۰

<table>
<thead>
<tr>
<th>شاخص</th>
<th>جاده</th>
<th>سپاه</th>
<th>شاخص</th>
<th>سپاه</th>
<th>شاخص</th>
<th>سپاه</th>
</tr>
</thead>
<tbody>
<tr>
<td>جاده</td>
<td>70/74</td>
<td>45/48</td>
<td>57/51</td>
<td>64/64</td>
<td>53/50</td>
<td>60/60</td>
</tr>
<tr>
<td>سپاه</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>شاخص</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
</tbody>
</table>

2. Clemens, S.R. 2012. Procedures for correcting digital camera imagery acquired by the AggieAir remote sensing platform. Utah State University, 47.

Recognizing Plant Tension in Plantations by use of UAVs Visible Light Detector.
(Case Study: Nekazalemrood Forestry Plan)

Alireza Hosseinpour¹, Jafar Oladi², Hasan Akbari³ and Mohammad Reza Serajian⁴

1- PhD Student, Faculty of Natural Resources, Sari Agricultural Sciences and Natural Resources University, Iran (Corresponding author: archoosinpour88@gmail.com)
2 and 3- Associate Professor and Assistant Professor, Faculty of Natural Resources, Sari Agricultural Sciences and Natural Resources University, Iran
4- Professor, Faculty of Geology and Spatial Engineering, University of Tehran, Iran

Received: September 9, 2017 Accepted: June 11, 2018

Abstract

The use of lightweight and cheap UAVs to detect the health of forests and identify the tension of planted can be useful to prevent the spread of pests and diseases. In the present research, a lightweight quadcopter drone with a 12-megapixel camera, visible light range was used. This UAV was employed to detect leaf tension of pure Quercus Castanifolia plantation, pure Acer Velutinum and their mixture in nine sample with 1-3 hectares. Flight at altitudes of 40, 70 and 100 meters was used to determine UAV ability for detecting areas plantations tension. The flight plan was designed in the form of 75% latitude coverage and 80% longitudinal coverage. Supervised classification such as Neural Net, Support Vector Machine (SVM), Maximum Likelihood and Mahalanobis Distance algorithms are used and 25% of samples were used to check the classification accuracy. Visible color saturation image and some vegetation indices such as vegetation index (NGRDI) and (EXG), has great potential for detecting leaf tension in trees and seedlings. The Jeffries-Matusita coefficient ranged from 1.81 to 1.97, and the Transformed Divergence was 1/87 to 1.98, indicating the degree of separation of educational samples. The overall accuracy of Support Vector Machine (SVM) algorithm as best method was 83 to 96.7 percent for all samples and the kappa coefficient was 0.89 to 0.98. The results revealed the high capability of visibility light sensor cameras mounted on a UAV in detecting tree leaf tension. The best flight height is between 70-100 M. Using image enhancement techniques, especially color saturation and vegetation indices, the range of visible light spectrum such as vegetation index (NGRDI) and (EXG) to detect leaf tension increase the effectiveness of these images. Design of an automatic imaging system adapted to the altitude variation of the tree crown is recommender in order to prevent a minimum level of overlapping.

Keywords: Disease, Plantation, UAV, Vegetation Index