1. Brockerhoff, E. G., Barbaro, L., Castagneyrol, B., Forrester, D. I., Gardiner, B., González-Olabarria, J. R., ... & Jactel, H. (2017). Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodiversity and Conservation, 26(13), 3005-3035.
https://doi.org/10.1007/s10531-017-1453-2 [
DOI:https://doi.org/10.1007/s10531-017-1453-2]
2. Brown, S., Gillespie, A. J. R., & Lugo, A. E. (1989). Biomass estimation methods for tropical forests with applications to forest inventory data. Forest Science, 5, 881-902.
https://doi.org/10.1093/forestscience/35.4.881 [
DOI:https://doi.org/10.1093/forestscience/35.4.881]
3. Cole-Thomas, G., & Ewel-John, J. (2006). Allometric equations for four valuable tropical tree speciesForest Ecology and Management. Forest Ecology and Management, 229(1-3), 351-360.
https://doi.org/10.1016/j.foreco.2006.04.017 [
DOI:10.1016/J.FORECO.2006.04.017]
4. Fugen, J., Sun, H., Erxue, C., Tianhong, W., Yalingand, C., & Qingwang, L. (2022). Above-Ground Biomass Estimation for Coniferous Forests in Northern China Using Regression Kriging and Landsat 9 Images. Remote Sensing, 14(22), 574. [
DOI:10.3390/rs14225734]
5. Ganz, S., Adler, P., & Kändler, G. (2020). Forest cover mapping based on a combination of aerial images and Sentinel-2 satellite data compared to National Forest Inventory data. Forests, 11(12), 1322. [
DOI:10.3390/f11121322]
6. Ghanbari-Motlaq, M., Babaei-Kafaki, S., Mataji, A., & Akhwan, R. (2019). Estimation of above ground biomass in Hyrcanian forest using satellite data. Journal of Environmental Science and Technology, 22(5). [
DOI:10.22034/JEST.2020.36440.4305]
7. Gheysarbeigi, S., Pir-Bavaghar, M., & Valipour, A. (2024). Forest Aboveground Biomass Estimation Using Satellite Imagery and Random Forest Regression Model. Geography and Environmental Sustainability, 14(1), 85-100. [
DOI:10.22126/GES.2024.9971.27150]
8. Haidari, M., Matinizadeh, M., Pourhashemi, M., Nouri, E., & Bagheri-Delijani, N. (2024). Investigating changes in the physical and chemical characteristics of soil in control and dieback stands in Marivan county, Kurdistan province in Iran. Forest Research and Development, 10(1), 95-111. [
DOI:10.30466/jfrd.2024.55002.1703]
9. Hassan, A., & Mohammadi, J. (2024). Estimation of aboveground biomass of Arabdagh reforested stands, Golestān province using Sentinel-2 satellite data. Journal of Wood and Forest Science and Technology, 30(40), 93-110. [
DOI:10.22069/JWFST.2024.21807.2039]
10. Hosseini, S., Sarikhani, N. E., & Soleimani, K. (2003). Investigation of effective factors in routing forest roads using geographic information system (case study of Khairud-Kanar Nowshahr forest). Iranian Journal of Natural Resources, 57(1), 47-59.
https://doi.org/10.3923/pjbs.2006.2055.2061 [
DOI:10.3923/pjbs.2006.2055.2061 [In Percian]]
11. Hualei, Y., Yang, X., Heskel, M., Sun, S., & Tang, J. (2017). Seasonal variations of leaf and canopy properties tracked by ground-based NDVI imagery in a temperate forest. Scientific Reports, 7(1), 1267 ref. 64. [
DOI:10.1038/s41598-017-01260-y]
12. Li, Y., Li, C., Li, M., & Liu, Z. (2019). Influence of Variable Selection and Forest Type on Forest Aboveground Biomass Estimation Using Machine Learning Algorithms. Forests, 10, 1073. [
DOI:10.3390/f10121073]
13. MacDicken, K. G. (2015). Global forest resources assessment 2015: what, why and how? Forest Ecology and Management, 352(7), 3-8. [
DOI:10.1016/j.foreco.2015.02.006]
14. Miri, N., & Darvish-Sefat, A. A. (2021). Estimation of canopy cover of Zagros forests using OLI sensor data of Landsat 8 satellite. Ecology of Iran's Forests, 9(17), 196-206.
https://doi.org/10.52547/ifej.9.17.196 [
DOI:https://sid.ir/paper391604/fa]
15. Mirrajabi, H., Oladi, J., & Mataji, A. (2016). Estimating above Ground Carbon Storage in Urban Afforestation Using Satellite Data (Case Study: Chitgar Forest Park in Tehran. Ecology of Iranian Forest, 4(7), 35-42. http://ifej.sanru.ac.ir/article-1-223-fa.html [In Persian]
16. Ohman, J. L., Gregory, M. J., & Robets, H. M. (2014). Scale considerations for integrating forest inventory plot data and satellite image data for regional forest mapping, remote sensing of invironment. Remote Sensing of Environment, 151, 3-15.
https://doi.org/10.1016/j.rse.2013.08.048 [
DOI:https://doi.org/10.1016/j.rse.2013.08.048]
17. Rahdari-Sufianian, A., Khaledin, S., & Jaddin, M.-N., S. (2012). Investigating the capability of satellite data in preparing a map of vegetation canopy percentage in arid and semi-arid areas (case study of Mote Wildlife Sanctuary). Environmental Science and Technology, 15(4 (series 59), 43-54. [
DOI:https://sid.ir/paper/87267/fa]
18. Rezaei-Sangdehi, S. M., Fallah, A., Oladi, J., & Latifi, H. (2022). The Modeling of Some Quantitative Characteristics Forest Using Topographic Features Stands (Case Study: District-3 of Sangdeh Forests). Ecology of Iranian Forest, 10(19), 88-98.
https://doi.org/10.52547/ifej.10.19.88 [
DOI:10.52547/ifej.10.19.88 [In Persian]]
19. Vafaei, S., Maleknia, R., Naghavi, H., & Fathizadeh, O. (2022). Estimation of Forest Canopy Using Remote Sensing and Geostatistics (Case Study: Marivan Baghan Forests). Journal of Environmental Science and Technology, 24(1), 71-82. https://www.sid.ir/fileserver/jf/692140111606.pdf
20. Xie, Y., Chen, T. B., Lei, M., Yang, J., Guo, Q. J., Song, B., & Zhou, X. Y. (2011). Spatial distribution of soil heavy metal pollution estimated by different interpolation methods: Accuracy and uncertainty analysis. Chemosphere, 82, 468-476. [
DOI:10.1016/j.chemosphere.2010.09.053]
21. Zhang, G., Ganguly, S., Nemani, R., White, M., Milesi, C., Hashimoto, H., . . . & Myneni, R. (2014). Estimation of forest aboveground biomass in California using canopy height and leaf area index estimated from satellite data. Journal Remote Sensing of Environment, 151, 44-56. [
DOI:10.1016/j.rse.2014.01.025]
22. Zobeiri, M. (2010). Vector statistics in the forest. Tehran University Publications.