1. Anderson, J.P.E., & Domsch, K.H. (1978). A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biology and Biochemistry, 10, 215-221. [
DOI:10.1016/0038-0717(78)90099-8]
2. Aubert, M., Hedde, M., Decaens, T., Bureau, F., Margerie, P., & Alard, D. (2003). Effects of tree canopy composition on earthworms and other macro-invertebrates in beech forests of Upper Normandy (France). Pedobiologia, 47, 904-912. [
DOI:10.1078/0031-4056-00279]
3. Bargali, S.S. (1996). Weight loss and N release in decomposing wood litter in a eucalypt plantation age series. Soil Biology and Biochemistry, 28, 699-702. [
DOI:10.1016/0038-0717(95)00143-3]
4. Bargali, S.S., Shukla, K., Singh, L., Ghosh, L., & Lakhera, M.L. (2015). Leaf litter decomposition and nutrient dynamics in four tree species of dry deciduous forest. Tropical Ecology, 56(2), 191-200.
5. Brown, S., Mahmood, A.R., Goslee, K.M., Pearson, T.R., Sukhdeo, H., Donoghue, D.N., & Watt, P. (2020). Accounting for greenhouse gas emissions from forest edge degradation: Gold mining in Guyana as a case study. Forests, 11(12), 1307. [
DOI:10.3390/f11121307]
6. Cambardella, C.A., & Elliott, E.T. (1992). Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Science Society of America Journal, 56, 777-783. [
DOI:10.2136/sssaj1992.03615995005600030017x]
7. Chalise, D., Kumar, L., & Kristiansen, P. (2019). Land degradation by soil erosion in Nepal: A review. Soil Systems, 3(1), 12. [
DOI:10.3390/soilsystems3010012]
8. Chen, X., Taylor, A.R., Reich, P.B., Hisano, M., Chen, H.Y., & Chang, S.X. (2023). Tree diversity increases decadal forest soil carbon and nitrogen accrual. Nature, 618(7963), 94-101. [
DOI:10.1038/s41586-023-05941-9]
9. Dahir, Y.A., Derege, T.M., & Tadeos, S.W. (2022). Variability of soil chemical properties in lower Wabishebele Sub-Basin in Somali Region South-eastern Ethiopia, as influenced by land use and land cover. African Journal of Agricultural Research, 18(2), 153-161. [
DOI:10.5897/AJAR2021.15840]
10. Davari, M., Gholami, L., Nabiollahi, K., Homaee, M., & Jafari, H. J. (2020). Deforestation and cultivation of sparse forest impacts on soil quality (case study: West Iran, Baneh). Soil and Tillage Research, 198, 104504. [
DOI:10.1016/j.still.2019.104504]
11. Dupouey, J.L., Dambrine, É., Laffite, J.D., & Moares, C. (2002). Irreversible impact of past land use on forest soils and biodiversity. Ecology, 83(11), 2978-2984. [
DOI:10.1890/0012-9658(2002)083[2978:IIOPLU]2.0.CO;2]
12. Durán-Zuazo, V.H., Francia-Martínez, J.R., García-Tejero, I., & Tavira, S.C. (2013). Implications of land-cover types for soil erosion on semiarid mountain slopes: Towards sustainable land use in problematic landscapes. Acta Ecologica Sinica, 33(5), 272-281. [
DOI:10.1016/j.chnaes.2013.07.007]
13. Eswaran, H., Lal, R., & Reich, P.F. (2019). Land degradation: an overview. Response to land degradation, 20-35. [
DOI:10.1201/9780429187957-4]
14. Francaviglia, R., Renzi, G., Ledda, L. & Benedetti, A. (2017). Organic carbon pools and soil biological fertility are affected by land use intensity in Mediterranean ecosystems of Sardinia, Italy. Science of the Total Environment, 599, 789-796. [
DOI:10.1016/j.scitotenv.2017.05.021]
15. Gan, F., Shi, H., Gou, J., Zhang, L., Dai, Q., & Yan, Y. (2024). Responses of soil aggregate stability and soil erosion resistance to different bedrock strata dip and land use types in the karst trough valley of Southwest China. International Soil and Water Conservation Research, 12(3), 684-696. [
DOI:10.1016/j.iswcr.2023.09.002]
16. Garland, J.L., & Mills, A.L (1991). Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Applied and Environmental Microbiology, 57(8), 2351-2359. [
DOI:10.1128/aem.57.8.2351-2359.1991]
17. Gomiero, T. (2016). Soil degradation, land scarcity and food security: Reviewing a complex challenge. Sustainability, 8(3), 281. [
DOI:10.3390/su8030281]
18. Guo, L., Shen, J., Li, B., Li, Q., Wang, C., Guan, Y., D'Acqui, L.P., Luo, Y., Tao, Q., Xu, Q., & Li, H. (2020). Impacts of agricultural land use change on soil aggregate stability and physical protection of organic C. Science of the Total Environment, 707, 136049. [
DOI:10.1016/j.scitotenv.2019.136049]
19. Heydari, N., Mousavi, S.B., Beheshti Al-Agha, A., Rakhsh, F., & Karimi, I. (2022). The effect of land use change on some physical, chemical and biological characteristics of soil. Iranian Journal of Soil and Water Research, 53 (7): 1625-1643.
20. Huang, J., Liu, W., Yang, S., Yang, L., Peng, Z., Deng, M., Xu, S., Zhang, B., Ahirwal, J., & Liu, L. (2021). Plant carbon inputs through shoot, root, and mycorrhizal pathways affect soil organic carbon turnover differently. Soil Biology and Biochemistry, 160, 108322. [
DOI:10.1016/j.soilbio.2021.108322]
21. Huang, Y., Li, P., An, Q., Mao, F., Zhai, W., Yu, K., & He, Y. (2021). Long‐term land use/cover changes reduce soil erosion in an ionic rare‐earth mineral area of southern China. Land Degradation & Development, 32(14), 4042-4055. [
DOI:10.1002/ldr.3890]
22. Hydari, N., Mousavi, S.B., Beheshti Ale Agha, A., Rakhsh, F., & Karimi, I. (2022). The effect of land use change on some physical, chemical and biological characteristics of soil. Iranian Journal of Soil and Water Research, 53(7), 1625-1643.
23. Jafari Haqiqi, M. (1382). Methods of soil analysis, sampling and important physical and chemical analyzes with emphasis on theoretical and practical principles, Mashhad. Naday Zohi Publications [In Persian]
24. Karimi, Y., Omid, E., Nouraei, A. S. (2024). Ten-Year Monitoring of the Vegetation Composition of the Sisangan Forest Park before and after the Cydalima perspectali Outbreak. Ecology of Iranian Forest, 12(1), 1-15. [
DOI:10.61186/ifej.12.1.1]
25. Kebebew, S., Bedadi, B., Erkossa, T., Yimer, F., & Wogi, L. (2022). Effect of different land-use types on soil properties in Cheha District, South-Central Ethiopia. Sustainability, 14(3), 1323. [
DOI:10.3390/su14031323]
26. Kemper, W.D., & Rosenau, R.C. (1986). Aggregate stability and size distribution. Methods of soil analysis: Part 1 Physical and mineralogical methods, 5, 425-442. [
DOI:10.2136/sssabookser5.1.2ed.c17]
27. Kooch, Y., Ghorbanzadeh, N., Haghverdi, K. & Francaviglia, R. (2023). Soil quality cannot be improved after thirty years of land use change from forest to rangeland. Science of The Total Environment, 856, 159132. [
DOI:10.1016/j.scitotenv.2022.159132]
28. Kooch, Y., Ghorbanzadeh, N., Kuzyakov, Y., Praeg, N. & Ghaderi, E. (2022). Investigation of the effects of the conversion of forests and rangeland to cropland on fertility and soil functions in mountainous semi-arid landscape. Catena, 210, 105951. [
DOI:10.1016/j.catena.2021.105951]
29. Kooch, Y., Heidari, F., Nouraei, A., Wang, L., Ji, Q.Q., Francaviglia, R., & Wu, D. (2024). Can soil health in degraded woodlands of a semi-arid environment improve after thirty years? Science of The Total Environment, 928, 172218. [
DOI:10.1016/j.scitotenv.2024.172218]
30. Kooch, Y., Mohmedi Kartalaei, Z., Amiri, M., Zarafshar, M., Shabani, S., & Mohammady, M. (2024). Soil health reduction following the conversion of primary vegetation covers in a semi-arid environment. Science of The Total Environment, 921, 171113. [
DOI:10.1016/j.scitotenv.2024.171113]
31. Kooch, Y., Theodose, T., & Samonil, P. (2014). Role of deforestation on spatial variability of soil nutrients in a Hyrcanian forest. Ecopersia, 2(4), 779-803.
32. Kurniawan, S., Utami, S.R., Mukharomah, M., Navarette, I.A., & Prasetya, B. (2019). Land use systems, soil texture, control carbon and nitrogen storages in the forest soil of UB forest, Indonesia. AGRIVITA Journal of Agricultural Science, 41(3), 416-427. [
DOI:10.17503/agrivita.v41i3.2236]
33. Lakzian A., Halajnia A., & Rahmani, H. (2010). The effect of alternating cycles of dry and wet soil on organic carbon, phosphorus and organic and mineral nitrogen. Water and Soil Journal, 24, 234-243 [In Persian]
34. Le Bissonnais, Y., Blavet, D., De Noni, G., Laurent, J.Y., Asseline, J., & Chenu, C. (2007). Erodibility of Mediterranean vineyard soils: relevant aggregate stability methods and significant soil variables. European Journal of Soil Science, 58(1), 188-195. [
DOI:10.1111/j.1365-2389.2006.00823.x]
35. Li, Y., Ma, Z., Liu, Y., Cui, Z., Mo, Q., Zhang, C., Sheng, H., Wang, W. & Zhang, Y. (2023). Variation in soil aggregate stability due to land use changes from alpine grassland in a high-altitude watershed. Land, 12(2), 393. [
DOI:10.3390/land12020393]
36. Lipiec, J. & Håkansson, I. (2000). Influences of degree of compactness and matric water tension on some important plant growth factors. Soil and Tillage Research, 53(2), 87-94. [
DOI:10.1016/S0167-1987(99)00094-X]
37. Liu, M., Han, G., & Zhang, Q. (2019). Effects of soil aggregate stability on soil organic carbon and nitrogen under land use change in an erodible region in Southwest China. International Journal of Environmental Research and Public Health, 16(20), 3809. [
DOI:10.3390/ijerph16203809]
38. Liu, M., Han, G., Li, Z., Zhang, Q., & Song, Z. (2019). Soil organic carbon sequestration in soil aggregates in the karst Critical Zone Observatory, Southwest China. Plant, Soil & Environment, 65(5), 253-259. [
DOI:10.17221/602/2018-PSE]
39. Liu, X., Zhang, W., Zhang, B., Yang, Q., Chang, J., & Hou, K. (2016). Diurnal variation in soil respiration under different land uses on Taihang Mountain, North China. Atmospheric Environment, 125, 283-292. [
DOI:10.1016/j.atmosenv.2015.11.034]
40. Lu, M., Zeng, F., Lv, S., Zhang, H., Zeng, Z., Peng, W., Song, T., Wang, K. & Du, H. (2023). Soil C: N: P stoichiometry and its influencing factors in forest ecosystems in southern China. Frontiers in Forests and Global Change, 6, 1142933. [
DOI:10.3389/ffgc.2023.1142933]
41. Lynch, J.M., & Bragg, E. (1985). Microorganisms and soil aggregate stability. In Advances in Soil Science: 2 (pp. 133-171). Springer New York. [
DOI:10.1007/978-1-4612-5088-3_3]
42. Ma, J., Qin, J., Ma, H., Zhou, Y., Shen, Y., Xie, Y., & Xu, D. (2022). Soil characteristic changes and quality evaluation of degraded desert steppe in arid windy sandy areas. Peer J, 10, 13100. [
DOI:10.7717/peerj.13100]
43. Mahmoodi, M.B., Kooch, Y. & Alberti, G. )2023(. Tree species is more effective than season dynamics on topsoil function and CO2 emissions in the temperate forests. Ecological Research, 38(1), 134-145. [
DOI:10.1111/1440-1703.12364]
44. Mao, R., Zeng, D.H., Ai, G.Y., Yang, D., Li, L.J., & Liu, Y.X. (2010). Soil microbiological and chemical effects of a nitrogen-fixing shrub in poplar plantations in semi-arid region of Northeast China. European Journal of Soil Biology, 46(5), 325-329. [
DOI:10.1016/j.ejsobi.2010.05.005]
45. Mehmandoost, F., Owliaie, H., Adhami, E., & Naghiha, R. (2018). Effect of land use change on some physicochemical and biological properties of the soils of Servak plain, Yasouj region. Water and Soil, 32(3), 587-599.
46. Meyfroidt, P., & Lambin, E.F. (2011). Global forest transition: prospects for an end to deforestation. Annual Review of Environment and Resources, 36, 343-371. [
DOI:10.1146/annurev-environ-090710-143732]
47. Moore, J.M., Klose, S., & Tabatabai, M.A. (2000). Soil microbial biomass carbon and nitrogen as affected by cropping systems. Biology and Fertility of Soils, 31,.200-210. [
DOI:10.1007/s003740050646]
48. Motaghian, H.R., & Mohammadi, J. (2011). Comparison of Some Soil Physical Quality Indices in Different Land Uses in Marghmalek Catchment, Shahrekord (Chaharmahal-va-Bakhtiari Province). Water and Soil, 25(1), 115-124 [In Persian]
49. Mottagian, H., & Mohammadi, J. (2010). Comparison of some soil physical indicators in different land uses in Shahrekord Murghmolek area (Chahar Mahal and Bakhtiari Provinces), Water and Soil Journal, 25, 56-62.
50. Nelson, D.W., & Sommers, L.E. (1982). Total carbon, organic carbon, and organic matter. In: Page, A.L., Miller, R.H., Keeney, D.R. (Eds.). Methods of soil analysis: Part 2 Chemical and Microbiological Properties, 9, 539-579. [
DOI:10.2134/agronmonogr9.2.2ed.c29]
51. Newbold, T., Hudson, L.N., Arnell, A.P., Contu, S., De Palma, A., Ferrier, S., Hill, S.L., Hoskins, A.J., Lysenko, I., Phillips, H.R., & Burton, V.J. (2016). Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science, 353(6296), 288-291. [
DOI:10.1126/science.aaf2201]
52. Nunes, J. S., Araujo, A. S. F., Nunes, L. A. P. L., Lima, L. M., Carneiro, R. F. V., Salviano, A. A. C., & Tsai, S. M. (2012). Impact of land degradation on soil microbial biomass and activity in Northeast Brazil. Pedosphere, 22, 88-95. [
DOI:10.1016/S1002-0160(11)60194-X]
53. Offiong, R.A., & Iwara, A.I. (2012). Quantifying the stock of soil organic carbon using multiple regression model in a fallow vegetation, Southern Nigeria. Ethiopian Journal of Environmental Studies and Management, 5(2), 166-172. [
DOI:10.4314/ejesm.v5i2.7]
54. Otte, A., Simmering, D., & Wolters, V. (2007). Biodiversity at the landscape level: recent concepts and perspectives for multifunctional land use. Landscape Ecology, 22(5), 639-642. [
DOI:10.1007/s10980-007-9094-6]
55. Owliaie, H.M., Adhami, A., & Najafi Ghairi, M. (2023). The effects of land use change on some soil fertility and biological characteristics in Yasouj forest area. Journal of Water and Soil Sciences. 27 (3), 57-75. [
DOI:10.47176/jwss.27.3.53491]
56. Patiño, S., Hernández, Y., Plata, C., Domínguez, I., Daza, M., Oviedo-Ocaña, R., Buytaert, W., & Ochoa-Tocachi, B.F. (2021). Influence of land use on hydro-physical soil properties of Andean páramos and its effect on streamflow buffering. Catena, 202, 105227. [
DOI:10.1016/j.catena.2021.105227]
57. Poirier, V., Roumet, C. & Munson, A.D. (2018). The root of the matter: Linking root traits and soil organic matter stabilization processes. Soil Biology and Biochemistry, 120, 246-259. [
DOI:10.1016/j.soilbio.2018.02.016]
58. Pulido Moncada, M., Gabriels, D., Cornelis, W., & Lobo, D. (2015). Comparing aggregate stability tests for soil physical quality indicators. Land Degradation & Development, 26(8), 843-852. [
DOI:10.1002/ldr.2225]
59. Qi, L.D.X., Long, R., & Tourrand, T.Y.J.F. (2015). Rangeland management in the Qilian Mountains, Tibetan plateau, China. Livestock Farming & Local Development, 68(2-3), 69-74. [
DOI:10.19182/remvt.20590]
60. Qiang, W., He, L., Zhang, Y., Liu, B., Liu, Y., Liu, Q., & Pang, X. (2021). Aboveground vegetation and soil physicochemical properties jointly drive the shift of soil microbial community during subalpine secondary succession in southwest China. Catena, 202, 105251. [
DOI:10.1016/j.catena.2021.105251]
61. Raj, A., Jhariya, M.K., Banerjee, A., Meena, R.S., Bargali, S.S., & Kittur, B.H. (2022). CO2 Capture, Storage, and Environmental Sustainability: Plan, Policy, and Challenges. In Plans and Policies for Soil Organic Carbon Management in Agriculture (pp. 159-189). Singapore: Springer Nature Singapore. [
DOI:10.1007/978-981-19-6179-3_7]
62. Sadeghi, M., Ajurlo, M., & Shahriari, A. (2018). Comparison of the quality of Lashberg of three pasture types and its relationship with some soil characteristics. Journal of Water and Soil Conservation Research, 26 (1), 218-205.
63. Samadzadeh, B., Y. Kooch and S.M. Hosseini. (2016). The effect of tree covers on topsoil biological indices in a plain forest ecosystem. Journal of Water and Soil Conservation, 23(5), 105-121 [In Persian]
64. Scanes, C.G. (2018). Human activity and habitat loss: destruction, fragmentation, and degradation. In Animals and human society (pp. 451-482). Academic Press. [
DOI:10.1016/B978-0-12-805247-1.00026-5]
65. Shahpiri, A. (2021). Analysis of detritivors and decomposers changes related to stoichiometry of plant and soil quality characters. Faculty of Natural Resources and Marine Sciences. Tarbiat Modares University.
66. Sherman, L., & Coleman, M.D. (2020). Forest soil respiration and exoenzyme activity in western North America following thinning, residue removal for biofuel production, and compensatory soil amendments. GCB Bioenergy, 12(3), 223-236. [
DOI:10.1111/gcbb.12668]
67. Six, J., Bossuyt, H., Degryze, S., & Denef, K. (2004). A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 79(1), 7-31. [
DOI:10.1016/j.still.2004.03.008]
68. Sofo, A., Mininni, A.N., & Ricciuti, P. (2020). Soil macrofauna: A key factor for increasing soil fertility and promoting sustainable soil use in fruit orchard agrosystems. Agronomy, 10(4), 456. [
DOI:10.3390/agronomy10040456]
69. Spohn, M., Pötsch, E.M., Eichorst, S.A., Woebken, D., Wanek, W., & Richter, A. (2016). Soil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grassland. Soil Biology and Biochemistry, 97, 168-175. [
DOI:10.1016/j.soilbio.2016.03.008]
70. Sun, X., Ye, Y., Ma, Q., Guan, Q. & Jones, D.L. (2021). Variation in enzyme activities involved in carbon and nitrogen cycling in rhizosphere and bulk soil after organic mulching. Rhizosphere, 19, 100376. [
DOI:10.1016/j.rhisph.2021.100376]
71. Sun, Y., Luo, C., Jiang, L., Song, M., Zhang, D., Li, J., Li, Y., Ostle, N.J., & Zhang, G. (2020). Land-use changes alter soil bacterial composition and diversity in tropical forest soil in China. Science of the Total Environment, 712, 136526. [
DOI:10.1016/j.scitotenv.2020.136526]
72. Tang, X., Qiu, J., Xu, Y., Li, J., Chen, J., Li, B., & Lu, Y. (2022). Responses of soil aggregate stability to organic C and total N as controlled by land-use type in a region of south China affected by sheet erosion. Catena, 218, 106543. [
DOI:10.1016/j.catena.2022.106543]
73. Teimouri M., Mataji A., & Khazai Pol P. (2011). Changes in geographic directions and its effect on plant diversity in the forest (case study: Seri Garrazban of Khairud Forest). Journal of Forest Science and Engineering Research, 3, 35-42.
74. Tiamgne, X.T., Kalaba, F.K., & Nyirenda, V.R. (2021). Land use and cover change dynamics in Zambia's Solwezi copper mining district. Scientific African, 14, 01007. [
DOI:10.1016/j.sciaf.2021.e01007]
75. Tian, J., McCormack, L., Wang, J., Guo, D., Wang, Q., Zhang, X., Yu, G., Blagodatskaya, E., & Kuzyakov, Y. (2015). Linkages between the soil organic matter fractions and the microbial metabolic functional diversity within a broad-leaved Korean pine forest. European Journal of Soil Biology, 66, 57-64. [
DOI:10.1016/j.ejsobi.2014.12.001]
76. Tong, H., Simpson, A.J., Paul, E.A., & Simpson, M.J.(2021). Land-use change and environmental properties alter the quantity and molecular composition of soil-derived dissolved organic matter. ACS Earth and Space Chemistry, 5(6), 1395-1406. [
DOI:10.1021/acsearthspacechem.1c00033]
77. Tufa, M., Melese, A., & Tena, W. (2019). Effects of land use types on selected soil physical and chemical properties: The case of Kuyu District, Ethiopia. Eurasian Journal of Soil Science, 8(2), 94-109. [
DOI:10.18393/ejss.510744]
78. van der Wal, A., & De Boer, W. (2017). Dinner in the dark: illuminating drivers of soil organic matter decomposition. Soil Biology and Biochemistry, 105, 45-48. [
DOI:10.1016/j.soilbio.2016.11.006]
79. Vesterdal, L., Clarke, N., Sigurdsson, B.D., & Gundersen, P. (2013). Do tree species influence soil carbon stocks in temperate and boreal forests? Forest Ecology and Management, 309, 4-18. [
DOI:10.1016/j.foreco.2013.01.017]
80. Wagner, S., Cattle, S.R., & Scholten, T. (2007). Soil‐aggregate formation as influenced by clay content and organic‐matter amendment. Journal of Plant Nutrition and Soil Science, 170(1), 173-180. [
DOI:10.1002/jpln.200521732]
81. Wang, X., Zhou, M., Li, T., Ke, Y., & Zhu, B. (2017). Land use change effects on ecosystem carbon budget in the Sichuan Basin of Southwest China: Conversion of cropland to forest ecosystem. Science of the Total Environment, 609, 556-562. [
DOI:10.1016/j.scitotenv.2017.07.167]
82. Wasonga, O.V., Mganga, K.Z., Ngugi, R.K., Nyangito, M.M. & Nyariki, D.M. (2024). Soil Properties and Stoichiometry as Influenced by Land Use, Enclosures and Seasonality in a Semi-arid Dryland in Kenya. Anthropocene Science, 3(1), 23-34. [
DOI:10.1007/s44177-024-00068-6]
83. Worry, W. (2013). Deforestation and forest degradation: concern, causes, policies, and their impacts.
84. Yeboah, S.O., Amponsah, I.K., Kaba, J.S., & Abunyewa, A.A. (2022). Variability of soil physicochemical properties under different land use types in the Guinea savanna zone of northern Ghana. Cogent Food & Agriculture, 8(1), 2105906. [
DOI:10.1080/23311932.2022.2105906]
85. Ying, L., Maohua, M., Zhi, D., Pujia, Y., Yanjing, L., Bo, L., Ming, J. & Xianguo, L. (2024). Stoichiometric ratios in soil are relevant to the abundance of constructive species in reed-dominated saline-alkaline marshes. Catena, 234, 107548. [
DOI:10.1016/j.catena.2023.107548]
86. Zandi, L., Erfanzadeh, R., & Joneidi-Jafari, H. (2016). Impact of land use changes from rangeland to horti-agriculture on soil total carbon and particulate organic matter in micro-and macro aggregates (Case study: Salavatabad, Sanandaj). Journal of Range and Watershed Managment, 69(3), 587-596.
87. Zeng, Z., Wang, S., Zhang, C., Tang, H., Li, X., Wu, Z., & Luo, J. (2015). Soil microbial activity and nutrients of evergreen broad-leaf forests in mid-subtropical region of China. Journal of Forestry Research, 26(3), 673-678. [
DOI:10.1007/s11676-015-0060-x]
88. Zhang, J., Zhao, H., Zhang, T., Zhao, X., & Drake, S. (2005). Community succession along a chronosequence of vegetation restoration on sand dunes in Horqin Sandy Land. Journal of Arid Environments, 62(4), 555-566. [
DOI:10.1016/j.jaridenv.2005.01.016]
89. Zhang, W., Yuan, S., Hu, N., Lou, Y.,& Wang, S. (2015). Predicting soil fauna effect on plant litter decomposition by using boosted regression trees. Soil Biology and Biochemistry, 82, 81-86. [
DOI:10.1016/j.soilbio.2014.12.016]
90. Zhao, C., Li, Y., Zhang, C., Miao, Y., Liu, M., Zhuang, W., Shao, Y., Zhang, W., & Fu, S. (2021). Considerable impacts of litter inputs on soil nematode community composition in a young Acacia crassicapa plantation. Soil Ecology Letters, 3, 145-155. [
DOI:10.1007/s42832-021-0085-3]
91. Zhu, G., Deng, L., & Shangguan, Z. )2018(. Effects of soil aggregate stability on soil N following land use changes under erodible environment. Agriculture, Ecosystems & Environment, 262, 18-28. [
DOI:10.1016/j.agee.2018.04.012]