دوره 13، شماره 1 - ( بهار و تابستان 1404 )                   جلد 13 شماره 1 صفحات 71-54 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Amiri M, mohammady M, Younesi-Korkheili H. (2025). Structural changes in forest stands considering the intensity of degradation in a montane ecosystem (Case study: Abr Forest, Semnan Province). Ecol Iran For. 13(1), 54-71. doi:10.61186/ifej.2024.569
URL: http://ifej.sanru.ac.ir/article-1-569-fa.html
امیری مجتبی، محمدی مجید، یونسی کردخیلی حامد. تغییرات ساختاری توده‌های جنگلی با توجه ‌به شدت تخریب در یک بوم‌سازگان کوهستانی (مطالعه موردی: جنگل ابر، استان سمنان) بوم شناسی جنگل های ایران (علمی- پژوهشی) 1404; 13 (1) :71-54 10.61186/ifej.2024.569

URL: http://ifej.sanru.ac.ir/article-1-569-fa.html


1- گروه محیط‌ زیست، دانشکده منابع طبیعی، دانشگاه سمنان، سمنان، ایران
2- گروه صنایع چوب و کاغذ، دانشکده منابع طبیعی، دانشگاه سمنان، سمنان، ایران
چکیده:   (1634 مشاهده)

چکیده مبسوط
مقدمه و هدف: مطالعه حاضر در سه توده‌ی با ترکیب و ساختار و هم‌چنین شدت تخریب متفاوت در جنگل ابر شاهرود استان سمنان انجام شد. در هر توده 3 قطعه نمونه 1 هکتاری به ابعاد (100×100 متر) به‎روش ترانسکت انتخاب شد. ترانسکت‌ها موازی با یکدیگر و در جهت کلی شیب دامنه (جهت جنوبیشمالی) و افزایش ارتفاع از سطح دریا مستقر شدند. در هر قطعه‌نمونه مشخصه‌های گونه، قطر در ارتفاع برابرسینه تمام درختان بیشتر از 7/5 سانتی‌متر اندازه‌گیری و ثبت شد. از قطر برابرسینه و رویه‌زمینی، تراکم درختان قطور، ضریب جینی، شاخص پیچیدگی ساختار و ضریب کاهش قطری دولیوکورت جهت مقایسه تفاوت بین توده‌ها استفاده شد. ارزیابی ساختار توده‌ها با توجه به شدت تخریب با استفاده از مثلث ساختار جنگل انجام شد. برای این‌کار، درختان در کلاسه‌های کم‌قطر (30 < سانتی‌متر)، میان‌قطر (50-30 سانتی‌متر) و قطور (بزرگ‌تر از 50 سانتی‌متر) طبقه‌بندی شدند. اندازه‌گیری تجدیدحیات گونه‌های چوبی در ریزقطعات نمونه با ابعاد 2×2 متر (4 مترمربع) در نظر گرفته‌شد. مشخصات تجدیدحیات گونه‌های چوبی در سه گروه با ارتفاع کمتر از 0/3، 1/30-0/30 و بیشتر از 1/30 متر اندازه‌گیری شد. تنوع گونه‌ای، غنا و یکنواختی توده‌های مورد مطالعه با استفاده از شاخص شانون‌ وینر تعیین شد. شاخص‌های تنوع شانون وینر، یکنواختی و غنا باتوجه‌ به گونه‌های شناسایی شده تعیین شدند. مشخصه‌های تنوع گونه‌ای، ترکیب، توزیع تعداد و رویه‌زمینی در طبقات قطری و وضعیت تجدیدحیات با استفاده از آزمون یک طرفه ANOVA و مقایسات چندگانه توکی در سطح 5 درصد باتوجه‌به نوع آشفتگی توده‌ها مقایسه شدند.

مواد و روش‌ها: مطالعه حاضر در سه توده‌ی با ترکیب و ساختار و هم‌چنین شدت تخریب متفاوت در جنگل ابر شاهرود در استان سمنان انجام شد. در هر توده، 3 قطعه نمونه 1 هکتاری به ابعاد (100×100 متر) به‎روش ترانسکت انتخاب شدند. ترانسکت‌ها موازی یکدیگر و در جهت کلی شیب مستقر شدند. در هر قطعه ‌نمونه مشخصه‌های گونه، قطر در ارتفاع برابرسینه تمام درختان بیشتر از 7/5 سانتی‌متر اندازه‌گیری و ثبت شد. از قطر برابرسینه و رویه‌زمینی، تراکم درختان قطور، ضریب جینی، شاخص پیچیدگی ساختار و ضریب کاهش قطری دولیوکورت جهت مقایسه تفاوت بین توده‌ها استفاده شد. ارزیابی ساختار توده با توجه به شدت تخریب با استفاده از مثلث ساختار جنگل جهت ارزیابی ساختار توده‌ها بر اساس شدت تخریب استفاده شد. برای این کار رویه‌زمینی در طبقات کم‌قطر، میان‌قطر و قطور محاسبه شد. اندازه‌گیری تجدیدحیات گونه‌های چوبی در ریزقطعات نمونه با ابعاد 2×2 متر (4 مترمربع) در نظر گرفته شد. مشخصات تجدید حیات گونه‌های چوبی در سه گروه با ارتفاع کمتر از 0/3، 1/30 -0/30 و بیشتر از 1/30 متر اندازه‌گیری شد. مشخصه‌های تنوع گونه‌ای، ترکیب، توزیع تعداد و رویه‌زمینی در طبقات قطری و وضعیت تجدید حیات با استفاده از آزمون یک طرفه ANOVA و مقایسات چندگانه توکی در سطح 5 درصد با توجه ‌به نوع آشفتگی توده‌ها مقایسه شدند.
یافته‌ها: نتایج پژوهش نشان داد که 2683 پایه متعلق‌به 11 گونه‌ی چوبی در منطقه موردمطالعه وجود دارد. بیشترین و کمترین تراکم درختان به‌ترتیب به توده با تخریب متوسط (346 پایه در هکتار) و شدید (189 پایه در هکتار) تعلق داشت. هم‌چنین، توده با تخریب شدید بیشترین میانگین قطر برابرسینه (37/46 سانتی‌متر) و میانگین ارتفاع (11/86 متر) را در بین سه توده دارا بود. کمترین مقدار تنوع و یکنواختی گونه‌ای در توده با تخریب شدید (2/31=H'، 63/0Species evenness =) و بیشترین آن در توده دست‌نخورده (2/97=H'، 87/0Species evenness = ) مشاهده شد. توزیع فراوانی‌ گونه‌ها در توده‌های جنگلی متفاوت است. ساختار توده‌ها فراوانی گسترده‌ای از حضور پایه‌های جوان و کم‌قطر (DBH < 30cm)، کاهش پایه‌های قطور و مسن (DBH > 55cm) را در هر سه توده نشان می‌دهد. توده با تخریب متوسط از متنوع‌ترین و فراوان‌ترین تجدید حیات گونه‌های چوبی برخوردار است. الگوی کلی توزیع تعداد در طبقات قطری توده‌های مورد مطالعه همانند توده‌های جنگلی ناهمسال طبیعی، رونده کاهنده یا نیمه ‌هذلولی را نشان می‌دهد به ‌طوری که منحنی توزیع جمعیت آنها از شکل جی J معکوس پیروی می‌کند. در هر سه توده، بیشترین فراوانی متعلق به گونه‌های لِوَر (Carpinus orientalis Mill) و اوری ( macranthera Fisch. &Quercus Mey) بود. در توده‌های کمتر دست‌خورده و تخریب زیاد، این دو گونه به‎ ترتیب 60/5 درصد (667 و 440 فرد) و 22/7 درصد (250 و 165 فرد) از کل پایه‌های مورد بررسی را تشکیل می‌دهند. هچنین فراوانی زادآوری در توده‌های مورد مطالعه به ‎طور متوسط (میانگین± انحراف معیار) 89±335 نونهال و 35±132 نهال (در سطح ۴ متر مربع) به‌دست آمد.
نتیجه‌گیری: آشفتگی‌های انسانی می‌توانند بر مکانیسم‌های تجدید حیات گونه‌های جنگلی تأثیر بگذارند. برخی از آنها توانایی تداوم از طریق جست‌دهی و رشد غیرجنسی را نشان می‌دهند. با این‌حال، توجه به این نکته مهم است که همه گونه‌ها این ظرفیت را برای ماندگاری نشان نمی‌دهند. در منطقه مورد مطالعه، گونه‌هایی از جمله لِوَر، اوری و حتی مای‌مرز قابلیت جست‌دهی خوبی دارند و می‌توانند به راحتی در شرایط تخریب رویشگاه را احیاء کنند. شدت بهره‌برداری و برداشت در محیط با آشفتگی و تخریب متوسط، بیشتر و در محیط با تخریب زیاد، کمتر است با این‎حال، نتایج به‌دست‌آمده نشان می‌دهند که به‌نظر نمی‌رسد بهره‌برداری و برداشت درختان توسط جوامع محلی و حتی تفرج کنندگان اثرات نامطلوبی بر فراوانی، ساختار و زادآوری توده‌های مورد مطالعه داشته باشد. بلکه عوامل دیگری از جمله برداشت‌های غیرمجاز و قاچاق، احداث جاده و مسیرهای انتقال گاز و برق، تغییر کاربری و احتمالاً تغییر اقلیم می‌توانند نقش مهمی در تخریب این توده‌های ارزشمند داشته باشند. با توجه ‌به نتایج تحقیق، بهبود وضعیت تجدید حیات طبیعی گونه‌های درختی بومی از طریق شیوه‌های مختلف جنگل‌کاری توصیه می‌شود و نیاز به حفاظت فوری به ‏‎منظور اطمینان از بهره‌برداری و مدیریت پایدار جنگل است.

متن کامل [PDF 2784 kb]   (84 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اکولوژی جنگل
دریافت: 1403/5/20 | پذیرش: 1403/10/18

فهرست منابع
1. Aghasizadeh, M., Taheri Abkenar, K., & Amoli Kondori, A. (2017). A comparison of quantitative and qualitative of oak (Quercus castaneifolia) rgeneration in the protected and unprotected forests in northern Khorasan. Renewable Natural Resources Research, 7(4), 1-16. [In Persian]
2. Ahamadi, H.R., Amiri, M, Mohammady, M., & Ravanbakhsh, H. (2023). The Impact of Windstorm Disturbance on the Forest Structural Attributes in Oriental Beech-Hornbeam Mixed Stands of Hyrcanian Region. Ecopersia, 11(3), 227-240.
3. Alijanpour, A., Eshaghi Rad, J. & Banj Shafiei, A., (2009). Investigation and comparison of two protected and non-protected forest stands regeneration diversity in Arasbaran. Iranian Journal of Forest, 1(3), 209-217. [In Persian]
4. Amini , R., Rahmani, R., & Parhizkar, P. (2018). Comparison of developmental stages in Beech-Hornbeam stands using non-spatial indices of stand structure. Iranian Journal of Forest and Poplar Research, 26(2), 156-167. DOI: 10022092/ijfpr.2018.116745. [In Persian]
5. Amirghasemi, F., Saghebtalebi, Kh., & Dargahi, D. (2001). The study of natural regeneration structure in Arasbaran forest (Sotanchi region). Iranian Journal of Forest and Poplar Research, 6(1), 1-62. [In Persian]
6. Amiri M. 2023. Effect of a Windstorm on Gaps Structural Characteristics in the Different Forest Stands in Darabkola Region, Mazandaran Province. Ecopersia, 11(4), 291-306.
7. Amiri, M., Dargahi, D., Habashi, H., & Azadfar, D. (2009). Comparison Structure of the natural and managed Oak (Quercus castaneifolia) Stand (shelter wood system) in Forest of Loveh, Gorgan. Journal of Agricultural Sciences and Natural Resources, 15(6), 1-10. [In Persian]
8. Amiri, M., Naghdi, R., & Moghadasi, D. (2016). Assessment of Quantitative and Qualitative Characteristics of Golestan Province Forests in an 11-Year Period (Iran). Environmental Resources Research, 4(2), 211-227. DOI: 10.22069/ijerr.2017.10050.1121
9. Angres, V.A., Messier, Ch., Beaaudet, M., & Leduc, A. (2005). Comparing composition and structure in old- growth and harvested (selection and diameter-limit cuts) northern hardwood stands in Quebec. Forest Ecology and Management, 217, 275-293.
10. Aponte, C., García, L.V., & Marañón, T. (2013). Tree species effects on nutrient cycling and soil biota: a feedback mechanism favouring species coexistence. Forest Ecology and Managemet, 309, 36-46.
11. Assessing Forest Degradation. (2011). Towards the Development of Globally Applicable Guidelines; Forest Resources Assessment; FAO: Rome, Italy.
12. Azizi Mehr, M., Kooch, Y., & Hosseini, S.M. (2020). The effect of forest degradation intensity on the dynamics of soil microbial activities and biochemical in the plain region of Noshahr. Iranian Journal of Forest, 12(2), 175-188. [In Persian]
13. Baker T.R., Dıaz D.M.V., Moscoso V.C., Navarro G., Monteagudo A., Pinto R., Cangani K., Fyllas N.M., Gonzalez G.L., Laurance W.F., Lewis S.L., Lloyd J., Steege H, Terborgh J.W,. & Phillips O.L. (2016). Consistent, small effects of treefall disturbances on the composition and diversity of four Amazonian forests. Journal of Ecology, 104(2), 497-506
14. Bazzaz, FA. (1975). Plant species diversity in old-field successional ecosystems in southern Illinois. Ecology, 56, 485-488.
15. Brooker., R. W., Scott, D., Palmer, S. C. F., & Swaine, E. (2006). Transient facilitative effects of heather on Scots pine along a grazing disturbance gradient in Scottish moorland. Journal of Ecology, 94(3), 637-645.
16. Bugmann., H. & Seidl, R. (2022). The evolution, complexity and diversity of models of long-term forest dynamics. Journal of Ecology, 110(10), 2288-2307.
17. Byrnes, J.E., Gamfeldt, L., Isbell, F., … & Emmett Duffy, J. (2014). Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods in Ecology and Evolution, 5, 111-124.
18. Cardelús, C.L., Woods, C.L., Bitew Mekonnen, A., Dexter, S., Scull, P., & Tsegay, B.A. (2019). Human disturbance impacts the integrity of sacred church forests, Ethiopia. PLoS One, 14(3), e0212430.
19. Carmona Yáñez, M.D., Lucas Borja, M.E., Zema D.A., Jing, X., Kooch, Y., Gallego, P.G., Plaza Alvarez P.A., Guiyao Zhou, G., & Delgado Baquerizo M. (2023). fluence of management and stand composition on ecosystem multifunctionality of Mediterranean tree forests. Trees, 37(6), 1801-1816.
20. Casals, P., Camprodon, J., Caritat, A., Rios, A.I., Guixé, D., Garcia-Martí, X., Martín-Alcón, S. & Coll, L. (2015). Forest structure of Mediterranean yew (Taxus baccata L.) populations and neighbor effects on juvenile yew performance in the NE Iberian Peninsula. Forest Systems, 24(3), e042-e042.
21. Chazdon, R.L. (2008). Beyond deforestation: Restoring forests and ecosystem services on degraded lands. Science, 320(5882), 1458-1460. doi: 10.1126/science.1155365.
22. Connell, J. H. (1978). Diversity in Tropical Rain Forests and Coral Reefs. Science, New Series, 199 (4335). Published by: American Association for the Advancement of Science Stable, 1302-1310.
23. Defo, L. (2005). Rattan, the forest and people. Licence Agreement Concerning Inclusion of Doctoral Thesis in the Institutional Repository of the University of Leiden, Retrieved, 360 p.
24. del Río, M., Pretzsch, H., Alberdi, I., Bielak, K., Bravo, F., Brunner, A., Condés, S., Ducey, M.J, Fonseca, T., von Lüpke, N., Pach, M., Peric, S., Perot, T., Souidi, Z., Spathelf, P., Steba, H., Tijardovic, M., Tomé, Margarida., Vallet, P., & Bravo-Oviedo, A. (2016). Characterization of the structure, dynamics, and productivity of mixedspecies stands: review and perspectives. European Journal of Forest Research, 135(1), 23-49.
25. Devaney, J.L., Jansen, M.A., & Whelan, P.M. (2014). Spatial patterns of natural regeneration in stands of English yew (Taxus baccata L.); Negative neighbourhood effects. Forest Ecology and Management, 321(1), 52-60.
26. Dobrowolska, D., Niemczyk, M., & Olszowska, G. (2017). The influence of stand structure on European yew Taxus baccata populations in its natural habitats in central Poland. Polish Journal of Ecology, 65(3), 369-384.
27. Donoso, P.J., & Nyland, R.D. (2005). Seedling density according to structure, dominance and understory cover in old-growth forest stands of the evergreen forest type in the coastal range of Chile. Revista Chilena de Historia Natural, 78, 51-63.
28. Doucet, J.L. (2003). L'alliance délicate de la gestion forestière et de la biodiversité dans les forêts du centre du Gabon. Faculté Universitaire des Sciences Agronomiques de Gembloux, Gembloux, 323 p.
29. Esmaeilpour, M., Sefidi, K. (2022). Effect of Traditional Conservation on Woody and Herbal Species Frequency in the Mountain Forests of Northern Iran (Case Study: Poudeh Village, Roodsar). Ecology of Iranian Forests, 9(18), 127-137. [In Persian]
30. FAO (Food and Agriculture Organization of the United Nations). (2010). Global Forest Resources Assessment 2010 (FAO Forestry Paper 163) (Rome: Food and Agriculture Organization).
31. FAO (Food and Agriculture Organization of the United Nations). (2011). State of the World's Forest Report. 164p. (Rome: Food and Agriculture Organization).
32. Farhadi, P., Soosani, J., & Erafnifard, S.Y. (2017). Evaluation level of tree diversity in the Hyrcanian forests using complex structural diversity index (Case study: beech-hornbeam type, Nav-e Asalem, Gilan), Iranian Journal of Forest and Poplar Research, 25, 3. 495-505. [In Persian]
33. Forey, E., Touzard, B., & Michalet, R.(2010). Does disturbance drive the collapse of biotic interactions at the severe end of a diversity-biomass gradient? Plant Ecology, 206(2), 287-295.
34. Gerville-réache, L., & Couallier, V. (2011). Representative sample (of a finite population): statistical definition and properties. 12 p. https://hal.archives-ouvertes.fr/hal-00655566/document.
35. Ghanbari Sharafeh, A., Marvie Mohajer, M.R. & Zobeiri, M. (2010). Natural regeneration of Yew in Arasbaran forests. Iranian Journal of Forest and Poplar Research, 18(3), 380-389. [In Persian]
36. Ghanbari, S., & Sefidi, K. (2020). Comparison of quantitative and qualitative characteristics of woody species regeneration at the different conditions of human interventions in Arasbaran forests. Iranian Journal of Forest and Poplar Research, 28(2), 111-123.
37. Ghanbari, S., Moradi, Gh., & Nasiri, V. (2018). Quantitative characteristics and structure of tree species in two different conservation situations in Arasbaran Forests .Iranian Journal of Forest and Poplar Research, 26(3), 355-367.
38. Ghomi-Avili, A., Hosseini, S.M., Mataji, A., & Jalali, Gh.A. (2007). Investigating the biodiversity of wood species and regeneration in two managed plant associations in Khairud-Kanar area of Nowshahr. Journal of Environmental Studies, 33(43), 101-106. [In Persian]
39. Grime, J. P. (1973). Competitive exclusion in herbaceous vegetation. Nature, 242(5396), 344-347.
40. Hacia una Definición de Degradación de los Bosques (2009) .Análisis Comparativo de las Definiciones Existentes; Departamento Forestal, Organización de las Naciones Unidas para la Alimentacióny la Agricultura (FAO): Roma, Italy.
41. Hart, J.L., Buchanan, M.L., Clark, S.L., & Torreano., S.J. (2012). Canopy accession strategies and climate-growth relationships in Acer rubrum. Forest Ecollogy and Management, 282, 124-132.
42. Hengeveld, R., & Haeck J. (1982). The distribution of abundance. I. Measurements. Journal of Biogeography, 9(4), 303-316.
44. Hosonuma, N., Herold, M., De Sy, V., De Fries, R.S., Brockhaus, M., Verchot, L., Angelsen, A., & Romijn, E. (2012). An assessment of deforestation and forest degradation drivers in developing countries. Environmental Research Letters, 7(4), 044009.
45. Hutchinson, G.E. (1957). Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology. Published by Cold Spring Harbor Laboratory Press 22, 415-427. http://dx.doi.org/10.1101/SQB.1957.022.01.039
46. ICP Forests. (2016). Manual on methods and criteria for harmonized sampling, assessment, monitoring, and analysis of the effects of air pollution on forests. Part VII.1. Assessment of Ground Vegetation. http://www.icp-forests.org/Manual.htm.
47. Ildoromi, A., Ghasemi, F., & Bahmani, N. (2016). Investigation the role of socio-economic factors on the degradation of Zagros forests (Kakareza Lorestan). Iranian Journal of Forest and Range Protection Research, 13(2), 140-149. [In Persian]
48. Jafari Afrapoly, M., Sefidi, K., Waez-Mousavi, S.M., & Varamesh, S. (2018). Qualitative and quantitative evaluation of dead trees in English yew (Taxus baccata) in Afratakhteh Forests, Golestan province, and northeastern Hyrcanian forests. Journal of Forest Research and Development, 3(4), 305-316 [In Persian]
49. Javanmiri Pour, M., Marvie Mohadjer, M.R., Zobeiri, M., V. Etemad, V., & Jourgholami. M. (2018). Determining the structural diversity of mixed oriental beech (Fagus orientalis L.) stands in Gorazbon district, Kheyrud forest. Iranian Journal of Forest and Poplar Research, 26(2), 143-155. [In Persian]
50. Kouassi, K. I., Barot, S., & Zoro Bi, I. A. (2009). Structure and Reproductive Strategy of Two Multiple- Stemmed Rattans of Côte d'Ivoire. Palms, 53(1), 38-48.
51. Kuuluvainen T., Aapala K., Ahlroth P., Kuusinen M., Lindholm T., Sallantaus T., Siitonen J., & Tukia H. (2002). Principles of ecological restoration of boreal forested ecosystems: Finland as an example. Silva Fennica, 36(1), 409-422.
53. Lamb, D., Stanturf, J., & Madsen, P. (2012). What is forest landscape restoration? In Forest Landscape Restoration: Integrating Natural and Social Sciences; Stanturf, J., Lamb, D., Madsen, P., Eds.; Springer: Dordrecht, The Netherlands, 3-23.
54. Le Quéré, C., Moriarty, R., Andrew, R.M., … ., & Zeng, N. (2014). Global carbon budget 2014. Earth Syst. Science. Data Discuss., 6, 1-90. doi: 10.5194/essdd-6-1-201.
55. Lin, S., Fan, C., Zhang, C., Zhao, X., & von Gadow, K. (2022). Anthropogenic disturbance mediates soil water effect on diversity-productivity relationships in a temperate forest region. Forest Ecology and Management, 525, 120544.
56. Lin, S., Fan, Ch., Wang, J., Chunyu Zhang, Ch., Zhao, X., & Gadow, L.V. (2024). Chronic anthropogenic disturbance mediates the biodiversity-productivity relationship across stand ages in a large temperate forest region. Journal of Applied Ecology, 61(3), 502-512.
57. Masrouri, E., Shataei, Sh., Moayeri, M.H., Soosani, J., & Bagheri, R. (2015). Modeling of forest degradation extend using physiographic and socio-economic variables (Case study: a part of KakaReza district in Khorramabad), Ecology of Iranian Forests, 3(5), 20-30. [In Persian]
58. Megurran, A. (1988). Ecological Diversity and its Measurement, Chapman and Hall. London, Priceton University Press, Priceton, NJ.
59. Michalet, R., Delerue, F., Liancourt, P., & Pugnaire, F. I. (2021). Are complementarity effects of species richness on productivity the strongest in species-rich communities? Journal of Ecology, 109(5), 2038-2046.
60. Mishra, B.P., Tripathi, O.P., Tripathi, R.S., & Pandey, H.N. (2004). Effects of anthropogenic disturbance on plant diversity and community structure of a sacred grove in Meghalaya, northeast India. Biodiversity & Conservation, 13(2), 421-436.
61. Modaberi, A., & Mirzaei, J. (2017). Study of decline effect on structure of central Zagros forests. Journal of Forest Research and Development, 2(4), 325-336. [In Persian]
62. Modica, G., Merlino, A., Solano, F., & Mercurio, R. (2015). An index for the assessment of degraded Mediterranean forest ecosystems. Forest Systems, 24(3), e037.
63. Neumann, M. and Starlinger, F., 2001. The significance of different indices for stand structure and diversity in forests. Forest Ecology and Management, 145(1-2), 91-106.
64. Nobakht, A.A., Hojjati, S.M., Pourmjidian., M.R. & Khorrami, R.A., (2018). Investigation on livestock presence in forest on plant biodiversity and soil properties in Zalemroud, Neka, Mazandaran province. Iranian Journal of Forest and Poplar Research, 26(3), 382-392. [In Persian]
65. Nzengue, E., Midoko Iponga, D., Mickolo Ch., & Mouyebissi, H.P. (2023). Ecological diversity, structure and exploitation of rattan stands according to a disturbance gradient around the Nkoltang forest, Estuary province of Gabon. Qeios, CC-BY 4.0: 1-23.
66. Nzooh-Dongmo Z.L., Nkongmeneck B-A., Fotso R.C. (1999). Diversity, preferred biotope and geographical distribution of rattans in the Dja Faunal Reserve and its surroundings. Report of the FORAFRI Seminar in Libreville - Session 2: Knowledge of the Ecosystem, 15 p.
67. Rostamikia, Y., & Sagheb-Talebi, Kh. (2012). Quantitative and qualitative characteristics of Persian oak (Quercus macranthera) and oriental hornbeam (Carpinus orientalis) on various land forms in Andabil forest, Khalkhal region. Iranian Journal of Forest, 3(4), 341-353. [In Persian]
68. Rouhi Moghadam, E.A., Akbarinia, M., Jalali, S.Gh.A. & Hosseini, S.M. (2002). Consideration on the effect of degradation causes (live stock grazing and forest villagers) on the change of vegetation and plant elements of Chelave forests. Pajouhesh & Sazendegi, 15(2), 54-63. [In Persian]
69. Sagarin R. D., & Gaines S. D. (2002). The abundant centre distribution: to what extent is it a biogeographical rule? Ecology Letters, 5, 137-147.
71. Sagheb-Talebi, Kh., & Schütz, J-Ph. (2002). The structure of natural oriental beech (Fagus orientalis L) in the Caspian region of Iran and potential for the application of the group selection system. Forestry, 75(4), 465-472.
72. Salas, C., LeMay, V., Núñez, P., Pacheco, P., & Espinosa, A., (2006). Spatial patterns in an old-growth Nothofagus obliqua forest in south-central Chile. Forest Ecology and Management, 231(1-3), 38-46.
73. Sasaki, N., & Putz, F.E. (2009). Critical need for new definitions of "forest" and "forest degradation" in global climate change agreements. Conservation Letters, 2, 226-232.
74. Sefidi, K., (2023). Closer to Nature Silviculture, Concepts to Ecological Management of Forest Ecosystems. University of Mohaghegh Ardabili Press, Ardabil, Iran, 388p. [In Persian]
75. Sefidi, K., Copenheaver, C.A., & Sadeghi, S.M.M. (2021). Anthropogenic pressures decrease structural complexity in Caucasian forests of Iran. Écoscience, 1-11.
76. Sefidi, K., & Jahdi, R. (2023). Impact of Anthropogenic disturbance on the size diversity of trees in Arasbaran forests (Case study: Hatam-Meshasi Forest Reserve in Meshgin-Shahr county, Iran). Iranian Journal of Forest and Poplar Research. 31(3), 247-263. Doi: 10.22092/ijfpr.2023.362923.2110. [In Persian]
77. Sefidi, K., Jahdi, R., Safari, M., & Asadi, A. (2022). Effects of human intervention intensities on the structural diversity of Caucasian Oak-Hornbeam stands in the Arasbaran forests. Journal of Wood and Forest Science and Technology, 29(1), 59-75.
78. Simula, M., & Mansur, E. (2011). Un desafío mundial que reclama una respuesta local. Unasylva, 62, 3-7.
79. Singh, S.P. (1998). Chronic disturbance, a principal cause of environmental degradation in developing countries. Environmental Conservation, 25.
81. Spies, T.A., & Franklin, J.F. (1991). The structure of natural young, mature, and old-growth Douglas-Fir forests in Oregon and Washington: 91-109. In: Ruggiero, L.F., Aubry, K.B., Carey, A.B. and Huff, M.H. (Eds.). Wildlife and Vegetation of Unmanaged Douglas-Fir Forests. USDA Forest Service General technical Report PNW-GTR, Pacific Northwest Research Station, Portland, 533p.
82. Stanturf, J.A., Palik, B.J., & Dumroese, R.K. (2014). Contemporary Forest restoration: A review emphasizing function. Forest Ecology and Management. 331, 292-323.
83. Stanturf, J.A., Palik, B.J., Williams, M.I., Dumroese, R.K., & Madsen, P. (2014). Forest restoration paradigms. Journal of Sustainable Forestry. 33, S161-S194.
84. Suh, M.H., & Lee, D.K. (1998). Stand structure and regeneration of Quercus mongolica forest in Korea. Forest Ecology and Management, 106, 27-34.
85. Sunderland TCH. (2007). Rattan resources and their use in West and Central Africa. FAO document archive, produced by the Forestry Department. Unasylva, 205, 31-42.
86. Taheri Abkenar, K., Toulabi, N., & Sotoudeh Foumani, B. (2013). A Comparison of silvicultural and growth characteristics of Judas tree (Cercis siliqustrum L.) in sites, Pol-dokhtar and Shineh Lorestan Province. Ecology of Iranian Forests, 1(1), 16-29. [In Persian]
87. Thompson, I.D. (2011). Biodiversidad, umbrales ecosistémicos, resilienciay degradación forestal. Unasylva, 238(62), 25-30.
88. Thompson, I.D., Guariguata., M.R., Okabe, K., Bahamondez, R., Nasi, R., Heymell V., & Sabogal C. (2013). An Operational Framework for Defining and Monitoring Forest Degradation. Ecology and Society, 18(2), 20. http://dx.doi.org/10.5751/es-05443-180220
89. Ushio, M., Kitayama, K., & Balser, T.C. (2010). Tree species-mediated spatial patchiness of the composition of microbial community and physicochemical properties in the topsoils of a tropical montane forest. Soil Biol Biochem, 42, 1588-1595.
90. Vanderlei, R.S., Barros M. F., Dexter, K.G., Tabarelli, M., & Santos, M.G. (2024). Human disturbances reduce tree abundance and stimulate woody plant resprouting and clonal growth in a tropical dry forest. Forest Ecology and Management. 555, 121694.
92. Vásquez-Grandón, A., Donoso, P.J., & Gerding, V. (2018). Forest Degradation: When Is a Forest Degraded? Forests, 9(726), 1-13.
93. Willim, K., Ammer, C., Seidel, D., Annighöfer, P., Schmucker, J., Schall, P. & Ehbrecht, M., (2022). Short - term dynamics of structural complexity in differently managed and unmanaged European beech forests. Trees, Forests and People, 8, 100231.
94. Wilkinson DM. (1999). The Disturbing History of Intermediate Disturbance. Nordic Oikos Society, 84(1), 145-147.
95. Yirga, F., Marie, M., Kassa, S., & Haile, M. (2019). Impact of altitude and anthropogenic disturbance on plant species composition, diversity, and structure at the Wof-Washa highlands of Ethiopia. Heliyon, 5(8), e02284.
96. Zenner, E.K., Sagheb-Talebi, Kh., Akhavan, R. & Peck, J.E. (2015). Integration of small-scale canopy dynamics smoothes live-tree structural complexity across development stages in old-growth Oriental beech (Fagus orientalis Lipsky) forests at the multigap scale. Forest Ecology and Management, 335, 26-36.
97. Zobeiry, M. (2000). Forest Inventory (Measurment of Tree and Stand). Second edition, University of Tehran Press, 401p [In Persian]
98. Aghasizadeh, M., Taheri Abkenar, K., & Amoli Kondori, A. (2017). A comparison of quantitative and qualitative of oak (Quercus castaneifolia) rgeneration in the protected and unprotected forests in northern Khorasan. Renewable Natural Resources Research, 7(4), 1-16. [In Persian]
99. Ahamadi, H.R., Amiri, M, Mohammady, M., & Ravanbakhsh, H. (2023). The Impact of Windstorm Disturbance on the Forest Structural Attributes in Oriental Beech-Hornbeam Mixed Stands of Hyrcanian Region. Ecopersia, 11(3), 227-240.
100. Alijanpour, A., Eshaghi Rad, J. & Banj Shafiei, A., (2009). Investigation and comparison of two protected and non-protected forest stands regeneration diversity in Arasbaran. Iranian Journal of Forest, 1(3), 209-217. [In Persian]
101. Amini , R., Rahmani, R., & Parhizkar, P. (2018). Comparison of developmental stages in Beech-Hornbeam stands using non-spatial indices of stand structure. Iranian Journal of Forest and Poplar Research, 26(2), 156-167. DOI: 10022092/ijfpr.2018.116745. [In Persian]
102. Amirghasemi, F., Saghebtalebi, Kh., & Dargahi, D. (2001). The study of natural regeneration structure in Arasbaran forest (Sotanchi region). Iranian Journal of Forest and Poplar Research, 6(1), 1-62. [In Persian]
103. Amiri M. 2023. Effect of a Windstorm on Gaps Structural Characteristics in the Different Forest Stands in Darabkola Region, Mazandaran Province. Ecopersia, 11(4), 291-306.
104. Amiri, M., Dargahi, D., Habashi, H., & Azadfar, D. (2009). Comparison Structure of the natural and managed Oak (Quercus castaneifolia) Stand (shelter wood system) in Forest of Loveh, Gorgan. Journal of Agricultural Sciences and Natural Resources, 15(6), 1-10. [In Persian]
105. Amiri, M., Naghdi, R., & Moghadasi, D. (2016). Assessment of Quantitative and Qualitative Characteristics of Golestan Province Forests in an 11-Year Period (Iran). Environmental Resources Research, 4(2), 211-227. DOI: 10.22069/ijerr.2017.10050.1121
106. Angres, V.A., Messier, Ch., Beaaudet, M., & Leduc, A. (2005). Comparing composition and structure in old- growth and harvested (selection and diameter-limit cuts) northern hardwood stands in Quebec. Forest Ecology and Management, 217, 275-293.
107. Aponte, C., García, L.V., & Marañón, T. (2013). Tree species effects on nutrient cycling and soil biota: a feedback mechanism favouring species coexistence. Forest Ecology and Managemet, 309, 36-46. [DOI:10.1016/j.foreco.2013.05.035]
108. Assessing Forest Degradation. (2011). Towards the Development of Globally Applicable Guidelines; Forest Resources Assessment; FAO: Rome, Italy.
109. Azizi Mehr, M., Kooch, Y., & Hosseini, S.M. (2020). The effect of forest degradation intensity on the dynamics of soil microbial activities and biochemical in the plain region of Noshahr. Iranian Journal of Forest, 12(2), 175-188. [In Persian]
110. Baker T.R., Dıaz D.M.V., Moscoso V.C., Navarro G., Monteagudo A., Pinto R., Cangani K., Fyllas N.M., Gonzalez G.L., Laurance W.F., Lewis S.L., Lloyd J., Steege H, Terborgh J.W,. & Phillips O.L. (2016). Consistent, small effects of treefall disturbances on the composition and diversity of four Amazonian forests. Journal of Ecology, 104(2), 497–506
111. Bazzaz, FA. (1975). Plant species diversity in old-field successional ecosystems in southern Illinois. Ecology, 56, 485-488.
112. Brooker., R. W., Scott, D., Palmer, S. C. F., & Swaine, E. (2006). Transient facilitative effects of heather on Scots pine along a grazing disturbance gradient in Scottish moorland. Journal of Ecology, 94(3), 637–645.
113. Bugmann., H. & Seidl, R. (2022). The evolution, complexity and diversity of models of long-term forest dynamics. Journal of Ecology, 110(10), 2288-2307.
114. Byrnes, J.E., Gamfeldt, L., Isbell, F., … & Emmett Duffy, J. (2014). Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods in Ecology and Evolution, 5, 111–124. [DOI:10.1111/2041-210X.12143]
115. Cardelús, C.L., Woods, C.L., Bitew Mekonnen, A., Dexter, S., Scull, P., & Tsegay, B.A. (2019). Human disturbance impacts the integrity of sacred church forests, Ethiopia. PLoS One, 14(3), e0212430.
116. Carmona Yáñez, M.D., Lucas Borja, M.E., Zema D.A., Jing, X., Kooch, Y., Gallego, P.G., Plaza Alvarez P.A., Guiyao Zhou, G., & Delgado Baquerizo M. (2023). fluence of management and stand composition on ecosystem multifunctionality of Mediterranean tree forests. Trees, 37(6), 1801-1816. [DOI:10.1007/s00468-023-02462-w]
117. Casals, P., Camprodon, J., Caritat, A., Rios, A.I., Guixé, D., Garcia-Martí, X., Martín-Alcón, S. & Coll, L. (2015). Forest structure of Mediterranean yew (Taxus baccata L.) populations and neighbor effects on juvenile yew performance in the NE Iberian Peninsula. Forest Systems, 24(3), e042-e042.
118. Chazdon, R.L. (2008). Beyond deforestation: Restoring forests and ecosystem services on degraded lands. Science, 320(5882), 1458-1460. doi: 10.1126/science.1155365.
119. Connell, J. H. (1978). Diversity in Tropical Rain Forests and Coral Reefs. Science, New Series, 199 (4335). Published by: American Association for the Advancement of Science Stable, 1302-1310.
120. Defo, L. (2005). Rattan, the forest and people. Licence Agreement Concerning Inclusion of Doctoral Thesis in the Institutional Repository of the University of Leiden, Retrieved, 360 p.
121. del Río, M., Pretzsch, H., Alberdi, I., Bielak, K., Bravo, F., Brunner, A., Condés, S., Ducey, M.J, Fonseca, T., von Lüpke, N., Pach, M., Peric, S., Perot, T., Souidi, Z., Spathelf, P., Steba, H., Tijardovic, M., Tomé, Margarida., Vallet, P., & Bravo-Oviedo, A. (2016). Characterization of the structure, dynamics, and productivity of mixedspecies stands: review and perspectives. European Journal of Forest Research, 135(1), 23-49.
122. Devaney, J.L., Jansen, M.A., & Whelan, P.M. (2014). Spatial patterns of natural regeneration in stands of English yew (Taxus baccata L.); Negative neighbourhood effects. Forest Ecology and Management, 321(1), 52-60.
123. Dobrowolska, D., Niemczyk, M., & Olszowska, G. (2017). The influence of stand structure on European yew Taxus baccata populations in its natural habitats in central Poland. Polish Journal of Ecology, 65(3), 369-384.
124. Donoso, P.J., & Nyland, R.D. (2005). Seedling density according to structure, dominance and understory cover in old-growth forest stands of the evergreen forest type in the coastal range of Chile. Revista Chilena de Historia Natural, 78, 51-63.
125. Doucet, J.L. (2003). L’alliance délicate de la gestion forestière et de la biodiversité dans les forêts du centre du Gabon. Faculté Universitaire des Sciences Agronomiques de Gembloux, Gembloux, 323 p.
126. Esmaeilpour, M., Sefidi, K. (2022). Effect of Traditional Conservation on Woody and Herbal Species Frequency in the Mountain Forests of Northern Iran (Case Study: Poudeh Village, Roodsar). Ecology of Iranian Forests, 9(18), 127-137. [In Persian]
127. FAO (Food and Agriculture Organization of the United Nations). (2010). Global Forest Resources Assessment 2010 (FAO Forestry Paper 163) (Rome: Food and Agriculture Organization).
128. FAO (Food and Agriculture Organization of the United Nations). (2011). State of the World’s Forest Report. 164p. (Rome: Food and Agriculture Organization).
129. Farhadi, P., Soosani, J., & Erafnifard, S.Y. (2017). Evaluation level of tree diversity in the Hyrcanian forests using complex structural diversity index (Case study: beech-hornbeam type, Nav-e Asalem, Gilan), Iranian Journal of Forest and Poplar Research, 25, 3. 495-505. [In Persian]
130. Forey, E., Touzard, B., & Michalet, R.(2010). Does disturbance drive the collapse of biotic interactions at the severe end of a diversity-biomass gradient? Plant Ecology, 206(2), 287–295.
131. Gerville-réache, L., & Couallier, V. (2011). Representative sample (of a finite population): statistical definition and properties. 12 p. https://hal.archives-ouvertes.fr/hal-00655566/document.
132. Ghanbari Sharafeh, A., Marvie Mohajer, M.R. & Zobeiri, M. (2010). Natural regeneration of Yew in Arasbaran forests. Iranian Journal of Forest and Poplar Research, 18(3), 380-389. [In Persian]
133. Ghanbari, S., & Sefidi, K. (2020). Comparison of quantitative and qualitative characteristics of woody species regeneration at the different conditions of human interventions in Arasbaran forests. Iranian Journal of Forest and Poplar Research, 28(2), 111-123. [DOI:10.22092/ijfpr.2020.121958. [In Persian]]
134. Ghanbari, S., Moradi, Gh., & Nasiri, V. (2018). Quantitative characteristics and structure of tree species in two different conservation situations in Arasbaran Forests .Iranian Journal of Forest and Poplar Research, 26(3), 355-367. [DOI:10.22092/ijfpr.2018.117739. [In Persian]]
135. Ghomi-Avili, A., Hosseini, S.M., Mataji, A., & Jalali, Gh.A. (2007). Investigating the biodiversity of wood species and regeneration in two managed plant associations in Khairud-Kanar area of Nowshahr. Journal of Environmental Studies, 33(43), 101-106. [In Persian]
136. Grime, J. P. (1973). Competitive exclusion in herbaceous vegetation. Nature, 242(5396), 344-347.
137. Hacia una Definición de Degradación de los Bosques (2009) .Análisis Comparativo de las Definiciones Existentes; Departamento Forestal, Organización de las Naciones Unidas para la Alimentacióny la Agricultura (FAO): Roma, Italy.
138. Hart, J.L., Buchanan, M.L., Clark, S.L., & Torreano., S.J. (2012). Canopy accession strategies and climate-growth relationships in Acer rubrum. Forest Ecollogy and Management, 282, 124–132.
139. Hengeveld, R., & Haeck J. (1982). The distribution of abundance. I. Measurements. Journal of Biogeography, 9(4), 303-316. [DOI:10.2307/2844717.]
140. Hosonuma, N., Herold, M., De Sy, V., De Fries, R.S., Brockhaus, M., Verchot, L., Angelsen, A., & Romijn, E. (2012). An assessment of deforestation and forest degradation drivers in developing countries. Environmental Research Letters, 7(4), 044009.
141. Hutchinson, G.E. (1957). Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology. Published by Cold Spring Harbor Laboratory Press 22, 415-427. http://dx.doi.org/10.1101/SQB.1957.022.01.039
142. ICP Forests. (2016). Manual on methods and criteria for harmonized sampling, assessment, monitoring, and analysis of the effects of air pollution on forests. Part VII.1. Assessment of Ground Vegetation. http://www.icp-forests.org/Manual.htm.
143. Ildoromi, A., Ghasemi, F., & Bahmani, N. (2016). Investigation the role of socio-economic factors on the degradation of Zagros forests (Kakareza Lorestan). Iranian Journal of Forest and Range Protection Research, 13(2), 140-149. [In Persian]
144. Jafari Afrapoly, M., Sefidi, K., Waez-Mousavi, S.M., & Varamesh, S. (2018). Qualitative and quantitative evaluation of dead trees in English yew (Taxus baccata) in Afratakhteh Forests, Golestan province, and northeastern Hyrcanian forests. Journal of Forest Research and Development, 3(4), 305-316 [In Persian]
145. Javanmiri Pour, M., Marvie Mohadjer, M.R., Zobeiri, M., V. Etemad, V., & Jourgholami. M. (2018). Determining the structural diversity of mixed oriental beech (Fagus orientalis L.) stands in Gorazbon district, Kheyrud forest. Iranian Journal of Forest and Poplar Research, 26(2), 143-155. [In Persian]
146. Kouassi, K. I., Barot, S., & Zoro Bi, I. A. (2009). Structure and Reproductive Strategy of Two Multiple- Stemmed Rattans of Côte d'Ivoire. Palms, 53(1), 38-48.
147. Kuuluvainen T., Aapala K., Ahlroth P., Kuusinen M., Lindholm T., Sallantaus T., Siitonen J., & Tukia H. (2002). Principles of ecological restoration of boreal forested ecosystems: Finland as an example. Silva Fennica, 36(1), 409-422. [DOI:10.14214/sf.572.]
148. Lamb, D., Stanturf, J., & Madsen, P. (2012). What is forest landscape restoration? In Forest Landscape Restoration: Integrating Natural and Social Sciences; Stanturf, J., Lamb, D., Madsen, P., Eds.; Springer: Dordrecht, The Netherlands, 3–23.
149. Le Quéré, C., Moriarty, R., Andrew, R.M., … ., & Zeng, N. (2014). Global carbon budget 2014. Earth Syst. Science. Data Discuss., 6, 1–90. doi: 10.5194/essdd-6-1-201.
150. Lin, S., Fan, C., Zhang, C., Zhao, X., & von Gadow, K. (2022). Anthropogenic disturbance mediates soil water effect on diversity-productivity relationships in a temperate forest region. Forest Ecology and Management, 525, 120544. [DOI:10.1016/j.foreco.2022.120544]
151. Lin, S., Fan, Ch., Wang, J., Chunyu Zhang, Ch., Zhao, X., & Gadow, L.V. (2024). Chronic anthropogenic disturbance mediates the biodiversity-productivity relationship across stand ages in a large temperate forest region. Journal of Applied Ecology, 61(3), 502-512. [DOI:10.1111/1365-2664.14588]
152. Masrouri, E., Shataei, Sh., Moayeri, M.H., Soosani, J., & Bagheri, R. (2015). Modeling of forest degradation extend using physiographic and socio-economic variables (Case study: a part of KakaReza district in Khorramabad), Ecology of Iranian Forests, 3(5), 20-30. [In Persian]
153. Megurran, A. (1988). Ecological Diversity and its Measurement, Chapman and Hall. London, Priceton University Press, Priceton, NJ.
154. Michalet, R., Delerue, F., Liancourt, P., & Pugnaire, F. I. (2021). Are complementarity effects of species richness on productivity the strongest in species-rich communities? Journal of Ecology, 109(5), 2038–2046.
155. Mishra, B.P., Tripathi, O.P., Tripathi, R.S., & Pandey, H.N. (2004). Effects of anthropogenic disturbance on plant diversity and community structure of a sacred grove in Meghalaya, northeast India. Biodiversity & Conservation, 13(2), 421-436.
156. Modaberi, A., & Mirzaei, J. (2017). Study of decline effect on structure of central Zagros forests. Journal of Forest Research and Development, 2(4), 325-336. [In Persian]
157. Modica, G., Merlino, A., Solano, F., & Mercurio, R. (2015). An index for the assessment of degraded Mediterranean forest ecosystems. Forest Systems, 24(3), e037. [DOI:10.5424/fs/2015243-07855]
158. Neumann, M. and Starlinger, F., 2001. The significance of different indices for stand structure and diversity in forests. Forest Ecology and Management, 145(1-2), 91-106.
159. Nobakht, A.A., Hojjati, S.M., Pourmjidian., M.R. & Khorrami, R.A., (2018). Investigation on livestock presence in forest on plant biodiversity and soil properties in Zalemroud, Neka, Mazandaran province. Iranian Journal of Forest and Poplar Research, 26(3), 382-392. [In Persian]
160. Nzengue, E., Midoko Iponga, D., Mickolo Ch., & Mouyebissi, H.P. (2023). Ecological diversity, structure and exploitation of rattan stands according to a disturbance gradient around the Nkoltang forest, Estuary province of Gabon. Qeios, CC-BY 4.0: 1-23. [DOI:10.32388/N7OJNL]
161. Nzooh-Dongmo Z.L., Nkongmeneck B-A., Fotso R.C. (1999). Diversity, preferred biotope and geographical distribution of rattans in the Dja Faunal Reserve and its surroundings. Report of the FORAFRI Seminar in Libreville - Session 2: Knowledge of the Ecosystem, 15 p.
162. Rostamikia, Y., & Sagheb-Talebi, Kh. (2012). Quantitative and qualitative characteristics of Persian oak (Quercus macranthera) and oriental hornbeam (Carpinus orientalis) on various land forms in Andabil forest, Khalkhal region. Iranian Journal of Forest, 3(4), 341-353. [In Persian]
163. Rouhi Moghadam, E.A., Akbarinia, M., Jalali, S.Gh.A. & Hosseini, S.M. (2002). Consideration on the effect of degradation causes (live stock grazing and forest villagers) on the change of vegetation and plant elements of Chelave forests. Pajouhesh & Sazendegi, 15(2), 54-63. [In Persian]
164. Sagarin R. D., & Gaines S. D. (2002). The abundant centre distribution: to what extent is it a biogeographical rule? Ecology Letters, 5, 137-147. [DOI:10.1046/j.1461-0248.2002.00297.x.]
165. Sagheb-Talebi, Kh., & Schütz, J-Ph. (2002). The structure of natural oriental beech (Fagus orientalis L) in the Caspian region of Iran and potential for the application of the group selection system. Forestry, 75(4), 465-472.
166. Salas, C., LeMay, V., Núñez, P., Pacheco, P., & Espinosa, A., (2006). Spatial patterns in an old-growth Nothofagus obliqua forest in south-central Chile. Forest Ecology and Management, 231(1-3), 38-46.
167. Sasaki, N., & Putz, F.E. (2009). Critical need for new definitions of “forest” and “forest degradation” in global climate change agreements. Conservation Letters, 2, 226–232. [DOI:10.1111/j.1755-263X.2009.00067.x]
168. Sefidi, K., (2023). Closer to Nature Silviculture, Concepts to Ecological Management of Forest Ecosystems. University of Mohaghegh Ardabili Press, Ardabil, Iran, 388p. [In Persian]
169. Sefidi, K., Copenheaver, C.A., & Sadeghi, S.M.M. (2021). Anthropogenic pressures decrease structural complexity in Caucasian forests of Iran. Écoscience, 1-11.
170. Sefidi, K., & Jahdi, R. (2023). Impact of Anthropogenic disturbance on the size diversity of trees in Arasbaran forests (Case study: Hatam-Meshasi Forest Reserve in Meshgin-Shahr county, Iran). Iranian Journal of Forest and Poplar Research. 31(3), 247-263. Doi: 10.22092/ijfpr.2023.362923.2110. [In Persian]
171. Sefidi, K., Jahdi, R., Safari, M., & Asadi, A. (2022). Effects of human intervention intensities on the structural diversity of Caucasian Oak-Hornbeam stands in the Arasbaran forests. Journal of Wood and Forest Science and Technology, 29(1), 59-75. [DOI:10.22069/JWFST.2022.19826.1954. [In Persian]]
172. Simula, M., & Mansur, E. (2011). Un desafío mundial que reclama una respuesta local. Unasylva, 62, 3–7.
173. Singh, S.P. (1998). Chronic disturbance, a principal cause of environmental degradation in developing countries. Environmental Conservation, 25. [DOI:10.1017/ S0376892998000010.]
174. Spies, T.A., & Franklin, J.F. (1991). The structure of natural young, mature, and old-growth Douglas-Fir forests in Oregon and Washington: 91-109. In: Ruggiero, L.F., Aubry, K.B., Carey, A.B. and Huff, M.H. (Eds.). Wildlife and Vegetation of Unmanaged Douglas-Fir Forests. USDA Forest Service General technical Report PNW-GTR, Pacific Northwest Research Station, Portland, 533p.
175. Stanturf, J.A., Palik, B.J., & Dumroese, R.K. (2014). Contemporary Forest restoration: A review emphasizing function. Forest Ecology and Management. 331, 292–323. [DOI:10.1016/j.foreco.2014.07.029]
176. Stanturf, J.A., Palik, B.J., Williams, M.I., Dumroese, R.K., & Madsen, P. (2014). Forest restoration paradigms. Journal of Sustainable Forestry. 33, S161–S194. [DOI:10.1080/10549811.2014.884004]
177. Suh, M.H., & Lee, D.K. (1998). Stand structure and regeneration of Quercus mongolica forest in Korea. Forest Ecology and Management, 106, 27-34.
178. Sunderland TCH. (2007). Rattan resources and their use in West and Central Africa. FAO document archive, produced by the Forestry Department. Unasylva, 205, 31-42.
179. Taheri Abkenar, K., Toulabi, N., & Sotoudeh Foumani, B. (2013). A Comparison of silvicultural and growth characteristics of Judas tree (Cercis siliqustrum L.) in sites, Pol-dokhtar and Shineh Lorestan Province. Ecology of Iranian Forests, 1(1), 16-29. [In Persian]
180. Thompson, I.D. (2011). Biodiversidad, umbrales ecosistémicos, resilienciay degradación forestal. Unasylva, 238(62), 25–30.
181. Thompson, I.D., Guariguata., M.R., Okabe, K., Bahamondez, R., Nasi, R., Heymell V., & Sabogal C. (2013). An Operational Framework for Defining and Monitoring Forest Degradation. Ecology and Society, 18(2), 20. http://dx.doi.org/10.5751/es-05443-180220
182. Ushio, M., Kitayama, K., & Balser, T.C. (2010). Tree species-mediated spatial patchiness of the composition of microbial community and physicochemical properties in the topsoils of a tropical montane forest. Soil Biol Biochem, 42, 1588–1595. [DOI:10.1016/j.soilbio.2010.05.035]
183. Vanderlei, R.S., Barros M. F., Dexter, K.G., Tabarelli, M., & Santos, M.G. (2024). Human disturbances reduce tree abundance and stimulate woody plant resprouting and clonal growth in a tropical dry forest. Forest Ecology and Management. 555, 121694. [DOI:10.1016/j.foreco.2024.121694.]
184. Vásquez-Grandón, A., Donoso, P.J., & Gerding, V. (2018). Forest Degradation: When Is a Forest Degraded? Forests, 9(726), 1-13. [DOI:10.3390/f9110726]
185. Willim, K., Ammer, C., Seidel, D., Annighöfer, P., Schmucker, J., Schall, P. & Ehbrecht, M., (2022). Short - term dynamics of structural complexity in differently managed and unmanaged European beech forests. Trees, Forests and People, 8, 100231. [DOI:10.1016/j.tfp.2022.100231]
186. Wilkinson DM. (1999). The Disturbing History of Intermediate Disturbance. Nordic Oikos Society, 84(1), 145-147.
187. Yirga, F., Marie, M., Kassa, S., & Haile, M. (2019). Impact of altitude and anthropogenic disturbance on plant species composition, diversity, and structure at the Wof-Washa highlands of Ethiopia. Heliyon, 5(8), e02284. [DOI:10.1016/j.heliyon.2019.e02284]
188. Zenner, E.K., Sagheb-Talebi, Kh., Akhavan, R. & Peck, J.E. (2015). Integration of small-scale canopy dynamics smoothes live-tree structural complexity across development stages in old-growth Oriental beech (Fagus orientalis Lipsky) forests at the multigap scale. Forest Ecology and Management, 335, 26-36.
189. Zobeiry, M. (2000). Forest Inventory (Measurment of Tree and Stand). Second edition, University of Tehran Press, 401p [In Persian]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به بوم‏شناسی جنگل‏های ایران می‌باشد.

طراحی و برنامه نویسی: یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Ecology of Iranian Forest

Designed & Developed by: Yektaweb