1. Borišev, M., Župunski, M., Arsenov, D., Nikolič, N., Tarčak, S., & Pajevič, S. (2024). Understanding beech (Fagus sylvatica L.) photosynthetic responses to microhabitat water deficit: a site-specific investigation. European Journal of Forest Research, 1-15. [
DOI:10.1007/s10342-024-01727-4]
2. Buonincontri, M. P., Bosso, L., Smeraldo, S., Chiusano, M. L., Pasta, S., & Di Pasquale, G. (2023). Shedding light on the effects of climate and anthropogenic pressures on the disappearance of Fagus sylvatica in the Italian lowlands: Evidence from archaeo-anthracology and spatial analyses. Science of the Total Environment, 877, 162893. [
DOI:10.1016/j.scitotenv.2023.162893]
3. Catoni, R., Gratani, L., Sartori, F., Varone, L., & Granata, M. U. (2015). Carbon gain optimization in five broadleaf deciduous trees in response to light variation within the crown: correlations among morphological, anatomical and physiological leaf traits. Acta Botanica Croatica, 74(1), 71-94. [
DOI:10.1515/botcro-2015-0010]
4. Fang, J., & Lechowicz, M. J. (2006). Climatic limits for the present distribution of beech (Fagus L.) species in the world. Journal of Biogeography, 33(10), 1804-1819. [
DOI:10.1111/j.1365-2699.2006.01533.x]
5. Flexas, J., Cano, F. J., Carriquí, M., Coopman, R. E., Mizokami, Y., Tholen, D., & Xiong, D. (2018). CO2 diffusion inside photosynthetic organs. The Leaf: a Platform for Performing Photosynthesis, 163-208. [
DOI:10.1007/978-3-319-93594-2_7]
6. Fotelli, M. N., Nahm, M., Radoglou, K., Rennenberg, H., Halyvopoulos, G., & Matzarakis, A. (2009). Seasonal and interannual ecophysiological responses of beech (Fagus sylvatica) at its south-eastern distribution limit in Europe. Forest Ecology and Management, 257(3), 1157-1164. [
DOI:10.1016/j.foreco.2008.11.026]
7. Gerosa, G., Marzuoli, R., Bussotti, F., Pancrazi, M., & Ballarin-Denti, A. (2003). Ozone sensitivity of Fagus sylvatica and Fraxinus excelsior young trees in relation to leaf structure and foliar ozone uptake. Environmental Pollution, 125(1), 91-98. [
DOI:10.1016/S0269-7491(03)00094-0]
8. Hatam, J., Tabari, M., Bahramifar, N., & Fallah Nosratabad, A. R. (2023). Growth and physiological responses of Populus nigra L. male and female seedlings under cadmium stress. Ecology of Iranian Forest, 11(22), 93-100. [In Persian] [
DOI:10.61186/ifej.11.22.91]
9. Hölscher, D. (2004). Leaf traits and photosynthetic parameters of saplings and adult trees of co-existing species in a temperate broad-leaved forest. Basic and Applied Ecology, 5(2), 163-172. [
DOI:10.1078/1439-1791-00218]
10. Janová, J., Kubásek, J., Grams, T. E. E., Zeisler‐Diehl, V., Schreiber, L., & Šantrůček, J. (2024). Effect of light‐induced changes in leaf anatomy on intercellular and cellular components of mesophyll resistance for CO2 in Fagus sylvatica. Plant Biology, 26(5), 842-854. [
DOI:10.1111/plb.13655]
11. Kartoolinejad, D., & Sahebalam, I. (2024). Effect of Humic Acid and Cattle Manure on Stomatal Conductance, Photosynthesis, and Growth Variables of White Mulberry Seedlings in the Nursery Condition. Ecology of Iranian Forest, 12(2), 130-143. [In Persian] [
DOI:10.61186/ifej.12.2.130]
12. Kartoolinejad, D., Shayanmehr, F., & Moshki, A. (2024). Investigation of the Leaf and Pollen Micromorphology of Maples (Acer L.) of Iran. Ecology of Iranian Forest, 12(1), 124-137. [In Persian] [
DOI:10.61186/ifej.12.1.124]
13. Ke, X., Yoshida, H., Hikosaka, S., & Goto, E. (2023). Photosynthetic photon flux density affects fruit biomass radiation-use efficiency of dwarf tomatoes under LED light at the reproductive growth stage. Frontiers in Plant Science, 14, 1076423. [
DOI:10.3389/fpls.2023.1076423]
14. Khodaverdi, S., Amiri, M., Kartoolinejad, D., & Mohammadi, J. (2018). Characteristics of canopy gap in a broad-leaved mixed forest (Case study: District No. 2, Shast-Kalateh Forest, Golestan province). Iranian Journal of Forest and Poplar Research, 26(1), 24-35. [In Persian]
15. Kitao, M., Agathokleous, E., Harayama, H., Yazaki, K., & Tobita, H. (2021). Constant ratio of Cc to Ci under various CO2 concentrations and light intensities, and during progressive drought, in seedlings of Japanese white birch. Photosynthesis Research, 147, 27-37. [
DOI:10.1007/s11120-020-00788-x]
16. Koike, T., Kitao, M., Maruyama, Y., Mori, S., & Lei, T. T. (2001). Leaf morphology and photosynthetic adjustments among deciduous broad-leaved trees within the vertical canopy profile. Tree physiology, 21(12-13), 951-958. [
DOI:10.1093/treephys/21.12-13.951]
17. Leuchner, M., Hertel, C., & Menzel, A. (2011). Spatial variability of photosynthetically active radiation in European beech and Norway spruce. Agricultural and Forest Meteorology, 151(9), 1226-1232. [
DOI:10.1016/j.agrformet.2011.04.014]
18. Leuschner, C., & Ellenberg, H. (2017). Ecology of Central European non-forest vegetation: coastal to alpine, natural to man-made habitats: vegetation ecology of Central Europe, Volume II (Vol. 2). Springer. [
DOI:10.1007/978-3-319-43048-5]
19. Mölder, A., Bernhardt-Römermann, M., & Schmidt, W. (2006). Forest ecosystem research in Hainich National Park (Thuringia): first results on flora and vegetation in stands with contrasting tree species diversity. Waldökologie online: AFSV-Berichte der Arbeitsgemeinschaft Forstliche Standorts-und Vegetationskunde, (3), 83-99.
20. Nazari, M., Zolfaghari, R., & Faiaz, P. (2011). Comparative Performance of Gas Exchanges in Seedlings of Three Native Oak Species of Zagros. National Conference on Central Zagros Forests. Khorram Abad, Iran. [In Persian]
21. Ninou, E., Tsialtas, J. T., Dordas, C. A., & Papakosta, D. K. (2013). Effect of irrigation on the relationships between leaf gas exchange related traits and yield in dwarf dry bean grown under Mediterranean conditions. Agricultural Water Management, 116, 235-241. [
DOI:10.1016/j.agwat.2012.08.002]
22. Petrík, P., Zavadilová, I., Šigut, L., Kowalska, N., Petek-Petrik, A., Szatniewska, J., ... & Pavelka, M. (2022). Impact of environmental conditions and seasonality on ecosystem transpiration and evapotranspiration partitioning (T/ET ratio) of pure European beech forest. Water, 14(19), 3015. [
DOI:10.3390/w14193015]
23. Petritan, A. M., Von Lüpke, B., & Petritan, I. C. (2007). Effects of shade on growth and mortality of maple (Acer pseudoplatanus), ash (Fraxinus excelsior) and beech (Fagus sylvatica) saplings. Forestry, 80(4), 397-412. [
DOI:10.1093/forestry/cpm030]
24. Priwitzer, T., Kurjak, D., Kmeť, J., Sitková, Z., & Leštianska, A. (2014). Photosynthetic response of European beech to atmospheric and soil drought. Central European Forestry Journal, 60(1), 32-38. [
DOI:10.2478/forj-2014-0003]
25. Rahmati, Y., Nourmohammadi, K., Naghdi, R., & Kartoolinejad, D. (2019). Effect of fungal degradation on physicochemical properties of exploited stumps of oriental beech over a 25-year felling period and the obtained Kraft pulp properties. Journal of Forest Science, 65(3), 96-105. [
DOI:10.17221/93/2018-JFS]
26. Sadeghipour, A., & Kartoolinejad, D. (2017). Carbon uptake and leaf gas exchange of ash tree (Fraxinus excelsior) affected by different intensities of photosynthetically active radiation (Case study: Central Europe forests). Journal of Natural Environment, 70(2), 373-384. [In Persian]
27. Sanginés de Cárcer, P., Vitasse, Y., Peñuelas, J., Jassey, V. E., Buttler, A., & Signarbieux, C. (2018). Vapor-pressure deficit and extreme climatic variables limit tree growth. Global Change Biology, 24(3), 1108-1122. [
DOI:10.1111/gcb.13973]
28. Sobuj, N. A. (2014). Performance of European aspen (Populus tremula L.) under the combined effect of elevated temperature and UV radiation (Master's thesis, Itä-Suomen yliopisto).
29. Stojanović, M., Jocher, G., Kowalska, N., Szatniewska, J., Zavadilová, I., Urban, O., ... & Marshall, J. D. (2024). Disaggregation of canopy photosynthesis among tree species in a mixed broadleaf forest. Tree Physiology, 44(7), tpae064. [
DOI:10.1093/treephys/tpae064]
30. Thomas, C., Wandji Nyamsi, W., Arola, A., Pfeifroth, U., Trentmann, J., Dorling, S., ... & Aculinin, A. (2023). Smart Approaches for Evaluating Photosynthetically Active Radiation at Various Stations Based on MSG Prime Satellite Imagery. Atmosphere, 14(8), 1259. [
DOI:10.3390/atmos14081259]