1. Aitken, S. N., & Bemmels, J. B. (2016). Time to get moving: Assisted gene flow of forest trees. Evolutionary Applications, 9(1), 271-290. https:// doi.org/10.1111/eva.12293 [
DOI:10.1111/eva.12293]
2. Alizadeh, Z., Zolfaghari, R, Molaee, S., & Fayyaz, P. (2023). Prediction of Establishment in Progenies of Persian Oak Trees Based on the Morphological and Chlorophyll Fluorescence Traits. Ecology of Iranian Forest, 11(22), 22-31. doi:10.61186/ifej.11.22.22 [In Persian] [
DOI:10.61186/ifej.11.22.22]
3. Alvani nezhad, S., Tabari, M., Espahbudi, K., & Taghvaei, M. (2009). Heritability of Traits in 1- Year Seedlings of Persian Oak (Quercus brantii Lindl.). Iranian Journal of Rangelands and Forests Plant Breeding and Genetic Research, 16(2), 218-228. [In Persian]
4. Barzdajn, W., & Bruder, M. (2018). Tree testing and estimation of heritability using the pedunculate oak Quercus robur L. seed orchard in the Krotoszyn Forest District. Lesne Prace Badawcze, 79(4), 309-315. DOI: 10.2478/frp-2018-0031 [
DOI:10.2478/frp-2018-0031]
5. Bogdan, S., Ivanković, M., Temunović, M., Morić, M., Franjić, J., & Bogdan, I.K. (2017). Adaptive genetic variability and differentiation of Croatian and Austrian Quercus robur L. populations at a drought prone field trial. Annals of Forest Research, 60(1), 33-46. [
DOI:10.15287/afr.2016.733]
6. Bussotti, F., Pollastrini, M., Holland, V., & Brueggemann, W. (2015). Functional traits and adaptive capacity of European forests to climate change. Environmental and Experimental Botany, 111, 91-113. [
DOI:10.1016/j.envexpbot.2014.11.006]
7. Cappa, E. P., Pathauer, P., & Lopez, G. A. (2010). Provenance variation and genetic parameters of Eucalyptus viminalis in Argentina. Tree, Genetics & Genomes, 6, 981-994. DOI: 10.1007/s11295-010-0307-9 [
DOI:10.1007/s11295-010-0307-9]
8. George, J. P., Theroux‐Rancourt, G., Rungwattana, K., Scheffknecht, S., Momirovic, N., Neuhauser, L., Weißenbacher, L., Watzinger, A., & Hietz, P. (2020). Assessing adaptive and plastic responses in growth and functional traits in a 10‐year‐old common garden experiment with pedunculate oak (Quercus robur L.) suggests that directional selection can drive climatic adaptation. Evolutionary Applications, 13(9), 2422-2438. [
DOI:10.1111/eva.13034]
9. Harfouche, A., Meilan, R., Kirst, M., Morgante, M., Boerjan, W., Sabatti, M., & Mugnozza, G. S. (2012). Accelerating the domestication of forest trees in a changing world. Trends in Plant Science, 17(2), 64-72. [
DOI:10.1016/j.tplants.2011.11.005]
10. Higgins, P., & Harte, J. (2006). Biophysical and biogeochemical responses to climate change depend on dispersal and migration. Bioscience, 56(5), 407-417.
https://doi.org/10.1641/0006-3568(2006)056[0407:BABRTC]2.0.CO;2 [
DOI:10.1641/0006-3568(2006) 056[0407:BABRTC]2.0.CO;2.]
11. IPCC, (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability. In: Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., Girma, B., Kissel, E.S., Levy, A.N., MacCracken, S., Mastrandrea, P.R., White, L.L. (Eds.), Part A: Global and Sectorial Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1132.
12. Karamian, M., & mirzaei, J. (2020). The Most Important Factors Affecting Persian Oak (Quercus brantii) Decline in Ilam Province. Ecology of Iranian Forest, 8(15), 93-103. doi:10.52547/ifej.8.15.93. [In Persian] [
DOI:10.52547/ifej.8.15.93]
13. Karimi Hajipomagh, K., Zolfaghari, R., Alvaninejad, S., & Fayyaz, P. (2014). Effect of Seed Provenance and Mother Tree of Quercus branti Base on Primary Establishment in Yasuj. Forest and Wood Products, 66(4), 427-439. Doi: 10.22059/jfwp.2014.36659 [In Persian]
14. Karimi, Z., Zolfaghari, R., Fayyaz, P., & Rahimian, J. (2021). Assessment of genetic structure in healthy and declined populaation of Quercus brantii Lindl. using EST-SSR and ISSR markers. Iranian Journal of Forest, 13(3), 305-317. Doi: 10.22034/ijf.2021.284198.1780 [In Persian]
15. Kelly, J. K. (2011). The Breeder's Equation. Nature Education Knowledge, 4(5), 5.
16. Kremer, A. (2010). Evolutionary responses of European oaks to climate change. Irish Forestry, 67, 53-66.
17. Larcher, W. (2000). Temperature stress and survival ability of Mediterranean sclerophyllous plants. Plant Biosystem, 134 (3), 279-295.
https://doi.org/10.1080/11263500012331350455 [
DOI:10.1080/11263500012331350455.]
18. Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J., Seidl, R., Delzon, S., Corona, P., Kolström, M., & Lexer, M. J. (2010). Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management, 259, 698-709. DOI: 10.1016/j.foreco.2009.09.023 [
DOI:10.1016/j.foreco.2009.09.023]
19. Loss, S., Terwilliger, L., & Peterson, A. C. (2011). Assisted colonization: integrating conservation strategies in the face of climate change. Biological Conservation, 144(1), 92-100.
https://doi.org/10.1016/j.biocon.2010.11.016 [
DOI:10.1016/j.biocon.2010.11.016.]
20. Mirzaie-Nodoushan, H., Hosseinzadeh, J., Pourhashemi, M., Mehrpur, S., Hamzehpour, M., & Abravesh, Z. (2018). Heritability and growth analysis of Brant's oak (Quercus brantii Lindl.) based on sapling characteristics. Iranian Journal of Forest and Poplar Research, 26(2), 215-227. Doi: 10.22092/ijfpr.2018.116750. [in Persian]
21. Neophytou, C. H., Palli, G., Douvani, A., & Aravanopoulos, T. A. (2007). Morphological differentiation and hybridization between Quercus alnifolia Poech and Quercus coccifera L. (Fagaceae) in Cyprus. Silvae Genetica, 56, 1-7. [
DOI:10.1515/sg-2007-0038]
22. Paques, L. E. (2013). Forest Tree Breeding in Europe. Current State-of-the-Art and Perspectives. Springer-Verlag, Berlin Heidelberg. [
DOI:10.1007/978-94-007-6146-9]
23. Ramirez-Valiente, J. A., Lorenzo, Z., Soto, A., Valladares, F., Gil, L., & Aranda, I. (2009). Elucidating the role of genetic drift and natural selection in cork oak differentiation regarding drought tolerance. Molecular Ecology, 18(18), 3803-3815. doi: 10.1111/j.1365-294X.2009.04317.x [
DOI:10.1111/j.1365-294X.2009.04317.x]
24. Rochon, C., Margolis, H. A., & Weber, J. C. (2007). Genetic variation in growth of Guazuma crinita (Mart.) trees at an early age in the Peruvian Amazon. Forest Ecology and Management, 243(2-3), 291-298. https:// doi. org/ 10. 1016/j. foreco. 2007. 03. 025 [
DOI:10.1016/j.foreco.2007.03.025]
25. Sampaio, T., Gonçalves, E., Patrício, M. S., Cota, T. M., & Almeida, M. H. (2019). Seed origin drives differences in survival and growth traits of cork oak (Quercus suber L.) populations. Forest Ecology and Managagment, 448, 267-277. [
DOI:10.1016/j.foreco.2019.05.001]
26. Valladares, F., Gianoli, E., & Gomez, J. M. (2007). Ecological limits to plant phenotypic plasticity. New Phytologist, 176(4), 749-763.
https://doi.org/10.1111/j.1469-8137.2007.02275.x [
DOI:10.1111/j.1469-8137.2007.02275.x.]
27. Woeste, K. E., Pike, C. C., Warren, J. C., & Coggeshall, M. V. (2021). Characterization of stem volume and form tradeoffs in a northern red oak (Quercus rubra) breeding population in early stages of selection. Annals of Forest Science, 78(3), 72. [
DOI:10.1007/s13595-021-01084-x]
28. Wright, S. (1949). The genetic structure of populations. Annals of Eugenics, 15(1), 323-354. [
DOI:10.1111/j.1469-1809.1949.tb02451.x]
29. Wu, H. X., & Matheson, A. C. (2002). Quantitive genetics of growth and form traits in radiate pine. CSIRO Forestry and Forest products Technical Raport, 138, 133.
30. Zolfaghari, R., Dalvand, F., Fayyaz, P., & Solla, A. (2022). Maternal drought stress on Persian oak (Quercus brantii Lindl.) afects susceptibility to single and combined drought and biotic stress in ofspring. Environmental and Experimental Botany, 194, 104716. [
DOI:10.1016/j.envexpbot.2021.104716]
31. Zolfaghari, R., Karimi, F., Fayyaz, P., & Martín, J. A. (2024). Evaluating physiological and genetic variation of Quercus brantii response to Brenneria goodwinii in Iran. European Journal of Plant Pathology, 168(3), 607-623. DOI: 10.1007/s10658-023-02788-8 [
DOI:10.1007/s10658-023-02788-8]