1. American Meteorological Society. (2012). Fog. Glossary of Meteorology. Retrieved January 2020, from http://glossary.ametsoc.org/wiki/Fog
2. Asadi, H., Jalilvand, H., & Moslemi, S. M. (2021). Vegetation Classification of Darabkola Forest and Their Relation to Physiographic Factors. Iranian Journal of Applied Ecology, 10(3), 17-33. [
DOI:10.47176/ijae.10.3.13521]
3. Atalay, I. (1992). Kayın Ormanlarının Ekolojisi ve Tohum Transferi Açısından Bölgelere Ayrımı. The ecology of beech (Fagus orientalis Lipsky) forests and their regioning in terms of seed transfer. The Improvement Institute of Forest Trees and Seeds, Forest Ministry, 5, 54-59.
4. Baguskas, S. A., Peterson, S. H., Bookhagen, B., & Still, C. J. (2014). Evaluating spatial patterns of drought-induced tree mortality in a coastal California pine forest. Forest Ecology and Management, 315, 43-53. [
DOI:10.1016/j.foreco.2013.12.020]
5. Barbeta, A., Camarero, J.J., Sangüesa-Barreda, G., Muffler, L., & Peñuelas, J. (2019). Contrasting effects of fog frequency on the radial growth of two tree species in a Mediterranean-temperate ecotone. Agricultural and Forest Meteorology, 264, 297-308. [
DOI:10.1016/j.agrformet.2018.10.020]
6. Butler, H. J., & Montzka, S. A. (2018). National Oceanic & Atmospheric Administration.
7. Cáceres, L., Gómez‐Silva, B., Garró, X., Rodríguez, V., Monardes, V., & McKay, C. P. (2007). Relative humidity patterns and fog water precipitation in the Atacama Desert and biological implications. Journal of Geophysical Research: Biogeosciences, 112(G4). [
DOI:10.1029/2006JG000344]
8. Dagtekin, D., Şahan, E. A., Denk, T., Köse, N., & Dalfes, H. N. (2020). Past, present and future distributions of Oriental beech (Fagus orientalis) under climate change projections. PLoS One, 15(11), e0242280. [
DOI:10.1371/journal.pone.0242280]
9. Dawson, T. E. (1998). Fog in the California redwood forest: ecosystem inputs and use by plants. Oecologia, 117, 476-485. [
DOI:10.1007/s004420050683]
10. Dezhban, A., Attarod, P., Zahedi Amiri, G., Grant Pypker, T., & Nanko, K. (2019). Fog precipitation and rainfall interception in a pure natural oriental beech (Fagus orientalis L.) stand in the Hyrcanian Forests, North of Iran. Forest and Wood Products, 72(2), 89-100.
11. Duarte, Y.C. & Sentelhas, P.C. (2020). NASA/POWER and DailyGridded weather datasets-how good they are for estimating maize yields in Brazil?. International Journal of Biometeorology, 64, 319-329. [
DOI:10.1007/s00484-019-01810-1]
12. Ertekin, M., Kırdar, E., & Ayan, S. (2015). The effects of exposure, elevation and tree age on seed characteristics of Fagus orientalis Lipsky. South-east European forestry: SEEFOR, 6(1), 15-23. [
DOI:10.15177/seefor.15-03]
13. Esen, D. (2000). Ecology and control of Rhododendron (Rhododendron ponticum L.) in Turkish eastern beech (Fagus orientalis Lipsky) forests (Doctoral dissertation, Virginia Polytechnic Institute and State University).
14. Esmailzadeh, O., Hosseini, S. M., Tabari, M., & Asadi, H. (2011). Classification system analysis in classification of forest plant communities (Case study: Darkola's beech forest). Iranian Journal of Plant biology, 3(7), 11-28.
15. Eugster, W., Burkard, R., Holwerda, F., Scatena, F. N., & Bruijnzeel, L. S. (2006). Characteristics of fog and fogwater fluxes in a Puerto Rican elfin cloud forest. Agricultural and Forest Meteorology, 139(3-4), 288-306. [
DOI:10.1016/j.agrformet.2006.07.008]
16. Fang, J., & Lechowicz, M. J. (2006). Climatic limits for the present distribution of beech (Fagus L.) species in the world. Journal of Biogeography, 33(10), 1804-1819. [
DOI:10.1111/j.1365-2699.2006.01533.x]
17. Fazlollahi Mohammadi, M., Tobin, B., Jalali, S. G., Kooch, Y., & Riemann, R. (2022). Fine-scale topographic influence on the spatial distribution of tree species diameter in old-growth beech (Fagus orientalis Lipsky.) forests, northern Iran. Scientific reports, 12(1), 7633. [
DOI:10.1038/s41598-022-10606-0]
18. Fischer, D. T., Still, C. J., Ebert, C. M., Baguskas, S. A., & Park Williams, A. (2016). Fog drip maintains dry season ecological function in a California coastal pine forest. Ecosphere, 7(6), e01364. [
DOI:10.1002/ecs2.1364]
19. Gadow, K. V., Zhang, C. Y., Wehenkel, C., Pommerening, A., Corral-Rivas, J., Korol, M., ... & Zhao, X. H. (2012). Forest structure and diversity. Continuous cover forestry, 29-83. [
DOI:10.1007/978-94-007-2202-6_2]
20. Gu, Y., Kusaka, H., Doan, V. Q., & Tan, J. (2019). Impacts of Urban Expansion on Fog Types in Shanghai, China: Numerical Experiments by WRF Model. Atmos Res, 220, 57-74. [
DOI:10.1016/j.atmosres.2018.12.026]
21. Gutiérrez, E. (1988). Dendroecological study of Fagus silvatica L. in the Montseny mountains (Spain). ACTA OECOL. (OECOL. PLANT.), 9(3), 301-309.
22. Hojjati, S. M., Darzi, A., Asadi, H., & Tafazoli, M. (2021). Changes in soil properties and plant biodiversity after 12 years of rehabilitating livestock farms in the Hyrcanian Forests. Agroforestry Systems, 95, 1493-1503. [
DOI:10.1007/s10457-021-00658-y]
23. Ingraham, N. L., & Matthews, R. A. (1995). The importance of fog-drip water to vegetation: Point Reyes Peninsula, California. Journal of Hydrology, 164(1-4), 269-285. [
DOI:10.1016/0022-1694(94)02538-M]
24. Jafari, A., Mortazavi, S., & Hosseini, S. M. (2022). Investigation the effectiveness of protected areas in Hyrcanian forests, Iran. Ecology of Iranian Forest, 10(20), 151-161. [
DOI:10.52547/ifej.10.20.151]
25. Kahyaoğlu, N., Kara, Ö., & Güvendi, E. (2020). Effects of Elevation on The Aboveground Biomass and Carbon Stock in The Oriental Beech (Fagus Orientalis Lipsky) Forests of The Sinop Region, Turkey. Applied Ecology & Environmental Research, 18(6). [
DOI:10.15666/aeer/1806_80498063]
26. Kavianpour., S. (2023). Quantification of fog precipitation of pure beech stands (Fagus orientalis L.) in high altitudes of Hyrcanian forests. Master of Science Thesis. Tehran University, 70 pages.
27. Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., ... & Team, R. C. (2020). Package 'caret'. The R Journal, 223(7), 48.
28. Lendzion, J., & Leuschner, C. (2008) Growth of European Beech (Fagus sylvatica L.) Saplings is Limited by Elevated Atmospheric Vapour Pressure Deficits. Forest Ecology and Management, 256, 648-655. [
DOI:10.1016/j.foreco.2008.05.008]
29. Liu, W., Han, Y., Li, J., Tian, X., & Liu, Y. (2018). Factors Affecting Relative Humidity and its Relationship with the Long-term Variation of Foghaze Events in the Yangtze River Delta. Atmos Environ, 193, 242-250 [
DOI:10.1016/j.atmosenv.2018.09.015]
30. Long, Q., Wu, B., Mi, X., Liu, S., Fei, X., & Ju, T. (2021). Review on Parameterization Schemes of Visibility in Fog and Brief Discussion of Applications Performance. Atmosphere, 12(12), 1666. [
DOI:10.3390/atmos12121666]
31. Martin‐Benito, D., Pederson, N., Köse, N., Doğan, M., Bugmann, H., Mosulishvili, M., & Bigler, C. (2018). Pervasive Effects of Drought on Tree Growth Across a Wide Climatic Gradient in the Temperate Forests of the Caucasus. Global Ecology and Biogeography, 27(11), 1314-1325. [
DOI:10.1111/geb.12799]
32. Marvi-Mohadjer, M. R. (2006). Silviculture. Tehran University Press
33. Naderi, M., Kialashaki, A., Veisi, R., Sheykheslami, A., & Tafazoli, M. (2021). Effect of Site on Soil Properties and Carbon Sequestration in Populus deltoids Stand in Sari. Ecology of Iranian Forest, 9(18), 187-195. [
DOI:10.52547/ifej.9.18.187]
34. Negishi, M., & Kusaka, H. (2022). Development of statistical and machine learning models to predict the occurrence of radiation fog in Japan. Meteorological Applications, 29(2), e2048. [
DOI:10.1002/met.2048]
35. Nilo, S. T., Cimini, D., Di Paola, F., Gallucci, D., Gentile, S., Geraldi, E., ... & Romano, F. (2020). Fog Forecast using WRF Model Output for Solar Energy Applications. Energies, 13(22), 6140. [
DOI:10.3390/en13226140]
36. Oladi, R., Elzami, E., Pourtahmasi, K., & Bräuning, A. (2017). Weather Factors Controlling Growth of Oriental Beech are on the Turn Over the Growing Season. European Journal of Forest Research, 136(2), 345-356. [
DOI:10.1007/s10342-017-1036-5]
37. Packham, J. R., Thomas, P. A., Atkinson, M. D., & Degen, T. (2012). Biological Flora of the British Isles: Fagus sylvatica. Journal of ecology, 100(6), 1557-1608. [
DOI:10.1111/j.1365-2745.2012.02017.x]
38. Papageorgiou, A. C., Vidalis, A., Gailing, O., Tsiripidis, I., Hatziskakis, S., Boutsios, S., ... & Finkeldey, R. (2008). Genetic Variation of Beech (Fagus sylvatica L.) in Rodopi (NE Greece). European Journal of Forest Research, 127, 81-88. [
DOI:10.1007/s10342-007-0185-3]
39. Peters, R., & Peters, R. (1997). Beech forests: woody species composition, populations and spatial aspects. Beech forests, 89-130. [
DOI:10.1007/978-94-015-8794-5_6]
40. Pohl, M. J., Lehnert, L., Bader, M. Y., Gradstein, S. R., Viehweger, J., & Bendix, J. (2021). A new fog and low stratus retrieval for tropical South America reveals widespread fog in lowland forests. Remote Sensing of Environment, 264, 112620. [
DOI:10.1016/j.rse.2021.112620]
41. Rangwala, I., & Miller, J. R. (2012). Climate change in mountains: a review of elevation-dependent warming and its possible causes. Climatic change, 114, 527-547. [
DOI:10.1007/s10584-012-0419-3]
42. Rohani, K., Hosseini Nasr, S. M., Asadi, H., & Tafazoli, M. (2022). The effect of recreation, rural population and forest roads on the diversity of forest understory species (case study: Zarin Abad Forests of Sari). Forest Research and Development, 8(2), 165-179.
43. Salman, A. G., & Kanigoro, B. (2021). Visibility forecasting using autoregressive integrated moving average (ARIMA) models. Procedia Computer Science, 179, 252-259. [
DOI:10.1016/j.procs.2021.01.004]
44. Scholl, M., Eugster, W., & Burkard, R. (2011). Understanding the role of fog in forest hydrology: stable isotopes as tools for determining input and partitioning of cloud water in montane forests. Hydrological Processes, 25(3), 353-366. [
DOI:10.1002/hyp.7762]
45. Sparks, A. H. (2018). nasapower: a NASA POWER global meteorology, surface solar energy and climatology data client for R. Journal of Open Source Software, 3(30), 1035. [
DOI:10.21105/joss.01035]
46. Tafazoli, M., Hojjati, S. M., Biparva, P., Kooch, Y., & Lamersdorf, N. (2021). Using nano-scale Fe0 particles and organic waste to improve the nutritional status of tree seedlings growing in heavy metal-contaminated soil. iForest-Biogeosciences and Forestry, 14(5), 447. [
DOI:10.3832/ifor3821-014]
47. Tolle, G., Polastre, J., Szewczyk, R., Culler, D., Turner, N., Tu, K., ... & Hong, W. (2005). A Macroscope in the Redwoods. In Proceedings of the 3rd international conference on Embedded networked sensor systems (pp. 51-63). [
DOI:10.1145/1098918.1098925]
48. Valizadeh, E., Asadi, H., Jaafari, A., & Tafazoli, M. (2023). Machine Learning Prediction of Tree Species Diversity using Forest Structure and Environmental Factors: a Case Study from the Hyrcanian forest, Iran. Environmental Monitoring and Assessment, 195(11), 1334. [
DOI:10.1007/s10661-023-11969-1]
49. WMO, G. (1996). Guide to meteorological instruments and methods of observation.
50. Wu, J., Zha, J., Zhao, D., & Yang, Q. (2018). Changes in Terrestrial Near-Surface Wind Speed and their Possible Causes: an Overview. Climate dynamics, 51(5-6), 2039-2078. [
DOI:10.1007/s00382-017-3997-y]
51. Yang, Q., Zhang, H., Wang, L., Ling, F., Wang, Z., Li, T., & Huang, J. (2021). Topography and Soil Content Contribute to Plant Community Composition and Structure in Subtropical Evergreen-Deciduous Broadleaved Mixed Forests. Plant Diversity, 43(4), 264-274. [
DOI:10.1016/j.pld.2021.03.003]