دوره 12، شماره 2 - ( پاییز و زمستان 1403 )                   جلد 12 شماره 2 صفحات 103-88 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Biglari-Gholdare S, Tahmasabi P, Rahmani M, Karimifam A, Golmohammadi ghane P. (2024). Assessment of Forest Fire Risk in Mazandaran Province Using Fuzzy AHP Model. Ecol Iran For. 12(2), 88-103. doi:10.61186/ifej.12.2.88
URL: http://ifej.sanru.ac.ir/article-1-541-fa.html
بیگلری قلدره سعدی، طهماسبی پیمان، رحمانی محمد، کریمی فام امین، گل محمدی قانع پگاه. ارزیابی خطر آتش‌سوزی جنگل‎ های استان مازندران با استفاده از مدل AHP فازی بوم شناسی جنگل های ایران (علمی- پژوهشی) 1403; 12 (2) :103-88 10.61186/ifej.12.2.88

URL: http://ifej.sanru.ac.ir/article-1-541-fa.html


1- گروه سنجش از دور و GIS، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران
2- گروه علوم ومهندسی آب، دانشکده کشاورزی، دانشگاه بوعلی همدان، همدان، ایران
3- گروه علوم محیط زیست، دانشگاه مازندران، بابلسر، ایران
4- گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه کردستان، سنندج، ایران
چکیده:   (1164 مشاهده)
چکیده مبسوط
مقدمه و هدف: فعالیت‌های انسانی، تنوع آب‌ و هوا و تنش‌های محیطی بهشدت بر اکوسیستم‌های جنگلی در سطح جهان تأثیر گذاشته است. آتش‌سوزی جنگل‌ها یکی از مهم‌ترین عوامل تخریب اکوسیستم جهانی است. آتشسوزی در جنگل چه منشأ انسانی و چه منشأ طبیعی داشته باشد بهعنوان بحران جدی در سالهای اخیر مطرح شده است. از اینرو، ارزیابی خطر آتش‌سوزی نقش مهمی در مدیریت آتش‌سوزی در جنگل‌های ایفا می‌کند؛ زیرا دانستن مکان با بالاترین خطر برای به حداقل رساندن تهدیدات برای منابع، جان و اموال ضروری است. ادغام اطلاعات مکانی از منابع مختلف با استفاده از تحلیلهای آماری در محیط GIS ابزاری مناسبی جهت مدیریت و گسترش آتشسوزی جنگلها است، که یکی از مهمترین مخاطرات طبیعی در شمال ایران بهشمار میرود. بنابراین، تهیه نقشه ارزیابی خطر آتشسوزی جهت برنامهریزی و حفاظت از جنگلها ضروری است.
مواد و روش‌ها: پژوهش حاضر از بعد ماهیت، کاربردی و از منظر شیوه تحقیق ترکیبی از روش‌های اسنادی، توصیفی و مبتنی بر مدل‌های کمی است. در مطالعه حاضر با ترکیب مدل‌های منطق فازی (Fuzzy) و سلسله مراتبی (AHP)، خطر آتش‌سوزی جنگلهای استان مازندران در 5 کلاس؛ بهترتیب خیلی زیاد، زیاد، متوسط، کم و خیلیکم بهکمک 4 معیار اصلی و 9 زیر معیار؛ توپوگرافی (ارتفاع، شیب، جهت و رودخانهها)، عوامل اقلیمی (بیشنه دما، بارش)، عوامل انسانی (مناطق مسکونی، شبکه راههای ارتباطی) و بیولوژیکی (پوشش گیاهی) مورد بررسی قرار گرفت. شاخص نرمال شده تفاوت پوشش گیاهی (NDVI) بر روی مجموعه تصاویر ماهواره سنتینل-2 در بازه زمانی 5 ساله (2017 تا 2022) در سامانه تحت وب GEE اعمال شد، به این طریق پوشش گیاهی خالص بهدست آمد. نقشههای ارتفاع، شیب و جهت شیب منطقه مطالعاتی از مدل رقومی ارتفاعی (DEM) 12/5 متر از مجموعه داده سنجنده ALOS AVNIR-2 تهیه گردید. همچنین در نرم‌افزار ArcMAP با استفاده از ابزار Euclidean distance فاصله از رودخانهها، مناطق مسکونی و شبکه راهها محاسبه گردید. موقعیت جغرافیایی ایستگاه‌های سینوپتیک هواشناسی از سازمان هواشناسی دریافت و اطلاعات آن بهعنوان دادههای ورودی هواشناسی مورد استفاده قرار گرفته است. در محیط ArcMap از ایستگاه‌های سینوپتیک نقشه میانگین بارش سالانه و بیشینه دما از طریق درون‌یابی برای بازه زمانی 2007 تا 2021 تهیه گردید. براساس این روش مدل‌سازی، از نظرات کارشناسان جهت اهمیت و اولویت نسبی معیارها و زیرمعیارها در خطر آتش‌سوزی جنگل‌های منطقه مورد مطالعه استفاده شد. سپس وزن فازی معیارها و زیرمعیارها بهدست آمد. براساس ضرایب وزنهای اعمال شده در طرح حاضر، وزن نهایی معیارها و زیر معیارها مؤثر در آتش‌سوزی جنگل از بیشترین وزن به کمترین بهترتیب مربوط به معیارهای توپوگرافی، بیولوژیکی، اقلیمی و انسانی است و در بین زیر معیارها بیشترین وزن و کمترین وزن بهترتیب مربوط به پوشش گیاهی و شیب است. نرخ سازگاری (CR) برای ماتریس‌های عوامل مؤثر برابر با 6/25٪ حاصل شده که مقدار آن کمتر از 10٪ بوده، در واقع نشاندهنده آن است که وزن زیر معیارها متناسب و قابل اعتماد میباشد. بیشترین وزنها مربوط به پوشش گیاهی و جهت شیب بوده و کمترین وزنها مربوط به فاصله از رودخانه و شیب است. در نهایت، نقشه ارزیابی خطر آتشسوزی با تلفیق نقشههای فازی زیرمعیارها در GIS تهیه گردید.
یافته‌ها: بهطور کلی، نتایج این مطالعه نشان داد که 72 درصد از منطقه مورد مطالعه دارای پتانسیل خطر آتش‌سوزی متوسط تا خیلی زیاد است. از مجموع مساحت حدود 2373189 هکتاری استان مازندران؛ 8/4 درصد از منطقه در آسیب‌پذیری خیلی کم؛ 18/3 درصد در آسیب‌پذیری کم؛ 23/66 درصد در آسیب‌پذیری متوسط؛ 25/62 در آسیب‌پذیری زیاد و بالغ بر 24 درصد در محدوده آسیب‌پذیری خیلی زیاد قرار دارد. بخشهای شرق و جنوب‌شرقی نسبت به سایر بخشهای منطقه مطالعاتی از پتانسیل آتش‌سوزی بالاتری برخوردار هستند. با مراجعه به لایههای فازی مذکور مشخص است در این بخشها ارتفاع، شیب و میزان بارش کم و علاوه بر آن تراکم مناطق مسکونی و شبکه راههای ارتباطی بالا بوده و همچنین میزان دما نیز بالا است. در واقع این چند عامل احتمال خطر آتش‌سوزی را در این بخشها بالا برده است. بیشترین پتانسیل آتش‌سوزی در پژوهش حاضر در ارتفاعات پایین مشاهده شده که می‌تواند بهدلیل تمرکز بیشتر فعالیت‌های انسانی در ارتفاعات پایین باشد. همچنین بیشتر آتش‌سوزی‌ها در شیبهای کم در منطقه مورد مطالعه رخ داده است. لایه فاصله از آبراههها نیز در بروز آتش‌سوزی نقش دوگانه‌ای دارد. نتایج حاصل از مدل نشان می‌دهد که بین فاصله از جادهها و پتانسیل آتش‌سوزی همبستگی معکوس وجود دارد. براساس نتایج مدل AHP فازی، احتمال آتش‌سوزی با کاهش بارش و افزایش دمای سالانه افزایش یافت. کاهش میزان بارش باعث کاهش رطوبت خاک و پوشش گیاهی شده، در نتیجه احتمال آتشسوزی افزایش مییابد. از طرفی افزایش دما باعث خشک شدن پوشش گیاهی و کاهش رطوبت گردیده، بنابراین احتمال آتش‌سوزی بالا میرود.
نتیجه‌گیری: بنابراین، می‌توان نتیجه گرفت که تهیه نقشه ارزیابی خطر آتش‌سوزی می‌تواند به مدیران و برنامهریزان در شناسایی مناطق با پتانسیل بالا و همچنین مدیریت بحران در مناطق آسیب‌پذیر کمک کند. نقشه ارزیابی خطر آتشسوزی بهدست آمده می‌تواند بهعنوان یک سیستم پشتیبانی تصمیمساز برای پیشبینی آتشسوزیهای آینده در منطقه مورد مطالعه استفاده شود.

 
متن کامل [PDF 895 kb]   (352 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: سنجش از دور
دریافت: 1402/10/7 | پذیرش: 1402/12/16

فهرست منابع
1. Abedi Gheshlaghi, H. (2019). Using GIS to develop a model for forest fire risk mapping. Journal of the Indian Society of Remote Sensing, 47(7), 1173-1185. [DOI:10.1007/s12524-019-00981-z]
2. Abdo, H. G., Almohamad, H., Al Dughairi, A. A., & Al-Mutiry, M. (2022). GIS-based frequency ratio and analytic hierarchy process for forest fire susceptibility mapping in the western region of Syria. Sustainability, 14(8), 4668. [DOI:10.3390/su14084668]
3. Adab, H., Kanniah, K. D., & Solaimani, K. (2013). Modeling forest fire risk in the northeast of Iran using remote sensing and GIS techniques. Natural hazards, 65, 1723-1743. [DOI:10.1007/s11069-012-0450-8]
4. Amalina, P., Prasetyo, L. B., & Rushayati, S. B. (2016). Forest Fire Vulnerability Mapping in Way Kambas National Park. Procedia Environmental Sciences, 33, 239-252. [DOI:10.1016/j.proenv.2016.03.075]
5. Ashtiani, E. F., Daryaei, M. G., Samani, K. M., & Amlashi, M. A. (2013). Review of fire sensitive areas with emphasis on drought impact with the joint use of PDSI, AHP and GIS (case study: Forest Saravan, Guilan province). Iranian Journal of Forest and Range Protection Research, 10(2).
6. Baqer Rasooli, S., & Bonyad, A. E. (2019). Evaluating the efficiency of the Dong model in determining fire vulnerability in Iran's Zagros forests. Journal of Forestry Research, 30(4), 1447-1458. [DOI:10.1007/s11676-018-0765-8]
7. Bazyar, M., Oladi Ghadikolaii, J., Pourghasemi, H. R., & Serajyan Maralan, M. R. (2020). Zoning and Investigation of Factors Affecting Forest Fire Using Evidential Belief Function Algorithm and Support Vector Machine in Boyer Ahmad City. Iranian Journal of Forest and Range Protection Research, 17(2), 197-222.
8. Brown, K. J., Hebda, N. J., Conder, N., Golinski, K. G., Hawkes, B., Schoups, G., & Hebda, R. J. (2017). Changing climate, vegetation, and fire disturbance in a sub-boreal pine-dominated forest, British Columbia, Canada. Canadian Journal of Forest Research, 47(5), 615-627. [DOI:10.1139/cjfr-2016-0283]
9. Bui, D. T., Bui, Q. T., Nguyen, Q. P., Pradhan, B., Nampak, H., & Trinh, P. T. (2017). A hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical area. Agricultural and forest meteorology, 233, 32-44. [DOI:10.1016/j.agrformet.2016.11.002]
10. Chen, F., Du, Y., Niu, S., & Zhao, J. (2015). Modeling forest lightning fire occurrence in the Daxinganling Mountains of Northeastern China with MAXENT. Forests, 6(5), 1422-1438. [DOI:10.3390/f6051422]
11. de Zea Bermudez, P., Mendes, J., Pereira, J. M. C., Turkman, K. F., & Vasconcelos, M. J. P. (2009). Spatial and temporal extremes of wildfire sizes in Portugal (1984-2004). International Journal of Wildland Fire, 18(8), 983-991. [DOI:10.1071/WF07044]
12. Dong, X. U., Li-min, D. A. I., Guo-fan, S., Lei, T., & Hui, W. (2005). Forest fire risk zone mapping from satellite images and GIS for Baihe Forestry Bureau, Jilin, China. Journal of forestry research, 16(3), 169-174. [DOI:10.1007/BF02856809]
13. Emami, H., & Shahriari, H. (2018). Quantification of environmental and human factors in the occurrence of forest fire with RS and GIS methods; Arsbaran protected areas. Sepehr Scientific-Research Quarterly of Geographical Information, 28(112), 35-53.
14. Eskandari, S. (2014). Assessing the forest fire risk potential using the Dong model, case study: the forests of three Neka-Zhalemroud sectors. Journal of Geographical Survey of Space, 5(15), 195-210 (In Persian).
15. Eskandari, S. (2012). Providing a forest fire potential model and its spread using RS and GIS. PhD Thesis. Forestry Department. Department of natural resources. Sari University of Agricultural Sciences and Natural Resources (In Persian).
16. Eugenio, F. C., dos Santos, A. R., Fiedler, N. C., Ribeiro, G. A., da Silva, A. G., dos Santos, Á. B., ... & Schettino, V. R. (2016). Applying GIS to develop a model for forest fire risk: A case study in Espírito Santo, Brazil. Journal of environmental management, 173, 65-71. [DOI:10.1016/j.jenvman.2016.02.021]
17. Falkowski, M. J., Gessler, P. E., Morgan, P., Hudak, A. T., & Smith, A. M. (2005). Characterizing and mapping forest fire fuels using ASTER imagery and gradient modeling. Forest ecology and management, 217(2-3), 129-146. [DOI:10.1016/j.foreco.2005.06.013]
18. Fox, D. M., Laaroussi, Y., Malkinson, L. D., Maselli, F., Andrieu, J., Bottai, L., & Wittenberg, L. (2016). POSTFIRE: A model to map forest fire burn scar and estimate runoff and soil erosion risks. Remote Sensing Applications: Society and Environment, 4, 83-91. [DOI:10.1016/j.rsase.2016.07.002]
19. Geng, M., Ma, K., Sun, Y., Wo, X., & Wang, K. (2020). Changes of land use/cover and landscape in Zhalong wetland as "red-crowned cranes country", Heilongjiang province, China. Global NEST Journal, 22(4), 477-483.
20. Gerdzheva, A. A. (2014). A comparative analysis of different wildfire risk assessment models (a case study for Smolyan district, Bulgaria). European Journal of Geography, 5(3), 22-36.
21. Giglio, L. (2010). MODIS collection 5 active fire product user's guide version 2.4. Science Systems and Applications, Inc.
22. Hong, H., Tsangaratos, P., Ilia, I., Liu, J., Zhu, A. X., & Xu, C. (2018). Applying genetic algorithms to set the optimal combination of forest fire related variables and model forest fire susceptibility based on data mining models. The case of Dayu County, China. Science of the total environment, 630, 1044-1056. [DOI:10.1016/j.scitotenv.2018.02.278]
23. Jaafari, A., Gholami, D. M., & Zenner, E. K. (2017). A Bayesian modeling of wildfire probability in the Zagros Mountains, Iran. Ecological informatics, 39, 32-44. [DOI:10.1016/j.ecoinf.2017.03.003]
24. Jaafari, A., Zenner, E. K., & Pham, B. T. (2018). Wildfire spatial pattern analysis in the Zagros Mountains, Iran: A comparative study of decision tree based classifiers. Ecological informatics, 43, 200-211. [DOI:10.1016/j.ecoinf.2017.12.006]
25. Jaafari, A., Mafi-Gholami, D., Thai Pham, B., & Tien Bui, D. (2019). Wildfire probability mapping: Bivariate vs. multivariate statistics. Remote Sensing, 11(6), 618. [DOI:10.3390/rs11060618]
26. Jaafari, A., Pazhouhan, I., & Bettinger, P. (2021). Machine learning modeling of forest road construction costs. Forests, 12(9), 1169. [DOI:10.3390/f12091169]
27. Jin, X. Y., Jin, H. J., Iwahana, G., Marchenko, S. S., Luo, D. L., Li, X. Y., & Liang, S. H. (2021). Impacts of climate-induced permafrost degradation on vegetation: A review. Advances in Climate Change Research, 12(1), 29-47. [DOI:10.1016/j.accre.2020.07.002]
28. Kayet, N., Chakrabarty, A., Pathak, K., Sahoo, S., Dutta, T., & Hatai, B. K. (2020). Comparative analysis of multi-criteria probabilistic FR and AHP models for forest fire risk (FFR) mapping in Melghat Tiger Reserve (MTR) forest. Journal of Forestry Research, 31, 565-579. [DOI:10.1007/s11676-018-0826-z]
29. Lautenberger, C. (2013). Wildland fire modeling with an Eulerian level set method and automated calibration. Fire Safety Journal, 62, 289-298. [DOI:10.1016/j.firesaf.2013.08.014]
30. Li, J., Zhao, Y., Zhang, A., Song, B., & Hill, R. L. (2021). Effect of grazing exclusion on nitrous oxide emissions during freeze-thaw cycles in a typical steppe of Inner Mongolia. Agriculture, ecosystems & environment, 307, 107217. [DOI:10.1016/j.agee.2020.107217]
31. Liu, Q., Shan, Y., Shu, L., Sun, P., & Du, S. (2018). Spatial and temporal distribution of forest fire frequency and forest area burnt in Jilin Province, Northeast China. Journal of Forestry Research, 29(5), 1233-1239. [DOI:10.1007/s11676-018-0605-x]
32. Mafi-Gholami, D., Jaafari, A., Zenner, E. K., Kamari, A. N., & Bui, D. T. (2020). Spatial modeling of exposure of mangrove ecosystems to multiple environmental hazards. Science of the total environment, 740, 140167. [DOI:10.1016/j.scitotenv.2020.140167]
33. Mahdavi, A. (2012). Forests and rangelands? wildfire risk zoning using GIS and AHP techniques. Caspian Journal of Environmental Sciences, 10(1), 43-52.
34. Marozas, V., Racinskas, J., & Bartkevicius, E. (2007). Dynamics of ground vegetation after surface fires in hemiboreal Pinus sylvestris forests. Forest Ecology and Management, 250(1-2), 47-55. [DOI:10.1016/j.foreco.2007.03.008]
35. McGuire, S. (2015). FAO, IFAD, and WFP. The state of food insecurity in the world 2015: meeting the 2015 international hunger targets: taking stock of uneven progress. Rome: FAO, 2015. Advances in Nutrition, 6(5), 623-624. [DOI:10.3945/an.115.009936]
36. Mhawej, M., Faour, G., Abdallah, C., & Adjizian-Gerard, J. (2016). Towards an establishment of a wildfire risk system in a Mediterranean country. Ecological informatics, 32, 167-184. [DOI:10.1016/j.ecoinf.2016.02.003]
37. Mohammadi, F., Shabanian, N., Porhashmi, H., Fatehi, P. (2010). Preparing a forest fire risk map using GIS and AHP in a part of Paveh forests. Iran Forest and Spruce Research, 18(4), 586-569 (In Persian).
38. Mohammed, O. A., Vafaei, S., Kurdalivand, M. M., Rasooli, S., Yao, C., & Hu, T. (2022). A Comparative Study of Forest Fire Mapping Using GIS-Based Data Mining Approaches in Western Iran. Sustainability, 14(20), 13625. [DOI:10.3390/su142013625]
39. Naderpour, M., Rizeei, H. M., Khakzad, N., & Pradhan, B. (2019). Forest fire induced Natech risk assessment: A survey of geospatial technologies. Reliability Engineering & System Safety, 191, 106558. [DOI:10.1016/j.ress.2019.106558]
40. Nuthammachot, N., & Stratoulias, D. (2021). A GIS-and AHP-based approach to map fire risk: a case study of Kuan Kreng peat swamp forest, Thailand. Geocarto International, 36(2), 212-225. [DOI:10.1080/10106049.2019.1611946]
41. Oliveira, S., Oehler, F., San-Miguel-Ayanz, J., Camia, A., & Pereira, J. M. (2012). Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest. Forest Ecology and Management, 275, 117-129. [DOI:10.1016/j.foreco.2012.03.003]
42. Pourghasemi, H. R. (2016). GIS-based forest fire susceptibility mapping in Iran: a comparison between evidential belief function and binary logistic regression models. Scandinavian Journal of Forest Research, 31(1), 80-98. [DOI:10.1080/02827581.2015.1052750]
43. Pourtaghi, Z. S., Pourghasemi, H. R., Aretano, R., & Semeraro, T. (2016). Investigation of general indicators influencing on forest fire and its susceptibility modeling using different data mining techniques. Ecological indicators, 64, 72-84. [DOI:10.1016/j.ecolind.2015.12.030]
44. Rasooli, S. B., Bonyad, A. E., & Pir Bavaghar, M. (2018). Forest fire vulnerability map using remote sensing data, GIS and AHP analysis (Case study: Zarivar Lake surrounding area). Caspian Journal of Environmental Sciences, 16(4), 369-377.
45. Saaty, T. L. (1980). The analytic hierarchy process: planning, priority setting, resource allocation. [DOI:10.21236/ADA214804]
46. Sachdeva, S., Bhatia, T., & Verma, A. K. (2018). GIS-based evolutionary optimized Gradient Boosted Decision Trees for forest fire susceptibility mapping. Natural Hazards, 92, 1399-1418. [DOI:10.1007/s11069-018-3256-5]
47. Sahana, M., & Ganaie, T. A. (2017). GIS-based landscape vulnerability assessment to forest fire susceptibility of Rudraprayag district, Uttarakhand, India. Environmental earth sciences, 76, 1-18. [DOI:10.1007/s12665-017-7008-8]
48. Salloum, J., & Abdo, H. (2016). Statistical modeling of conservation the vegetation of the land in Alqadmous area from rainfall erosion. Tishreen Univ J Res Sci Stud-Arts Human Ser, 38(3), 667-683.
49. Satir, O., Berberoglu, S., & Donmez, C. (2016). Mapping regional forest fire probability using artificial neural network model in a Mediterranean forest ecosystem. Geomatics, Natural Hazards and Risk, 7(5), 1645-1658. [DOI:10.1080/19475705.2015.1084541]
50. Tabibian, S. (2022). Physical zoning of forest fire risk using fuzzy AHP and GIS methods (Case study: Asalem). Physical Social Planning, 9(2), 61-72.
51. Tanvir, M. S., & Mujtaba, I. M. (2006). Neural network based correlations for estimating temperature elevation for seawater in MSF desalination process. Desalination, 195(1-3), 251-272. [DOI:10.1016/j.desal.2005.11.013]
52. Tariq, A., Shu, H., Siddiqui, S., Munir, I., Sharifi, A., Li, Q., & Lu, L. (2022). Spatio-temporal analysis of forest fire events in the Margalla Hills, Islamabad, Pakistan using socio-economic and environmental variable data with machine learning methods. Journal of Forestry Research, 33(1), 183-194. [DOI:10.1007/s11676-021-01354-4]
53. Thach, N. N., Ngo, D. B. T., Xuan-Canh, P., Hong-Thi, N., Thi, B. H., Nhat-Duc, H., & Dieu, T. B. (2018). Spatial pattern assessment of tropical forest fire danger at Thuan Chau area (Vietnam) using GIS-based advanced machine learning algorithms: A comparative study. Ecological informatics, 46, 74-85. [DOI:10.1016/j.ecoinf.2018.05.009]
54. Tiwari, A., Shoab, M., & Dixit, A. (2021). GIS-based forest fire susceptibility modeling in Pauri Garhwal, India: a comparative assessment of frequency ratio, analytic hierarchy process and fuzzy modeling techniques. Natural hazards, 105, 1189-1230. [DOI:10.1007/s11069-020-04351-8]
55. Tuyen, T. T., Jaafari, A., Yen, H. P. H., Nguyen-Thoi, T., Van Phong, T., Nguyen, H. D., ... & Pham, B. T. (2021). Mapping forest fire susceptibility using spatially explicit ensemble models based on the locally weighted learning algorithm. Ecological Informatics, 63, 101292. [DOI:10.1016/j.ecoinf.2021.101292]
56. Vadrevu, K., & Lasko, K. (2015). Fire regimes and potential bioenergy loss from agricultural lands in the Indo-Gangetic Plains. Journal of Environmental Management, 148, 10-20. [DOI:10.1016/j.jenvman.2013.12.026]
57. Veena, H. S., Ajin, R. S., Loghin, A. M., Sipai, R., Adarsh, P., Viswam, A., ... & Jayaprakash, M. (2017). Wildfire risk zonation in a tropical forest division in Kerala, India: a study using geospatial techniques. International Journal of Conservation Science, 8(3).
58. Verde, J. C., & Zêzere, J. L. (2010). Assessment and validation of wildfire susceptibility and hazard in Portugal. Natural Hazards and Earth System Sciences, 10(3), 485-497. [DOI:10.5194/nhess-10-485-2010]
59. Wang, X., Wotton, B. M., Cantin, A. S., Parisien, M. A., Anderson, K., Moore, B., & Flannigan, M. D. (2017). cffdrs: an R package for the Canadian forest fire danger rating system. Ecological Processes, 6(1), 1-11. [DOI:10.1186/s13717-017-0070-z]
60. Wotton, B. M., Martell, D. L., & Logan, K. A. (2003). Climate change and people-caused forest fire occurrence in Ontario. Climatic change, 60(3), 275-295. [DOI:10.1023/A:1026075919710]
61. Zhang, G., Wang, M., & Liu, K. (2019). Forest fire susceptibility modeling using a convolutional neural network for Yunnan province of China. International Journal of Disaster Risk Science, 10, 386-403. [DOI:10.1007/s13753-019-00233-1]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به بوم‏شناسی جنگل‏های ایران می‌باشد.

طراحی و برنامه نویسی: یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Ecology of Iranian Forest

Designed & Developed by: Yektaweb