1. Aaltonen, H., Köster, K., Köster, E., Berninger, F., Zhou, X., Karhu, K., Biasi, C., Bruckman, V., Palviainen, M., & Pumpanen, J. (2019). Forest fires in Canadian permafrost region: the combined effects of fire and permafrost dynamics on soil organic matter quality. Biogeochemistry, 143, 257-274. [
DOI:10.1007/s10533-019-00560-x]
2. Agbeshie, A. A., Abugre, S., Atta-Darkwa, T., & Awuah, R. (2022). A review of the effects of forest fire on soil properties. Journal of Forestry Research, 33(5), 1419-1441. [
DOI:10.1007/s11676-022-01475-4]
3. Alcañiz, M., Outeiro, L., Francos, M., Farguell, J., & Úbeda, X. (2016). Long-term dynamics of soil chemical properties after a prescribed fire in a Mediterranean forest (Montgrí Massif, Catalonia, Spain). Science of the Total Environment, 572, 1329-1335. [
DOI:10.1016/j.scitotenv.2016.01.115]
4. Alexakis, D., Kokmotos, I., Gamvroula, D., & Varelidis, G. (2021). Wildfire effects on soil quality: Application on a suburban area of West Attica (Greece). Geosciences Journal, 25, 243-253. [
DOI:10.1007/s12303-020-0011-1]
5. Amini, Z., & Malekmohammadi, B. (2022). Developing Wetland Management Framework Based on Ecological Approach (Case Study: Anzali International Wetland). Environmental Science and Technology 23(10), 119-132 (In Persian). [
DOI:10.30495/jest.2022.50015.4957]
6. Aref, I. M., El Atta, H. A., & Mohamed AL Ghamde, A. R. (2011). Effect of forest fires on tree diversity and some soil properties. International Journal of Agriculture & Biology, 13(5), 659-664.
7. Asadolahi, Z., Danehkar, A., & Alizadeh Shabani, A. (2011). Horizontal array study and plant cover zonation of Choghakhor wetland (W Iran). Rostaniha, 12(1), 13-29 (In Persian). [
DOI:10.22092/botany.2011.101425]
8. Badía-Villas, D., González-Pérez, J. A., Aznar, J. M., Arjona-Gracia, B., & Martí-Dalmau, C. (2014). Changes in water repellency, aggregation and organic matter of a mollic horizon burned in laboratory: Soil depth affected by fire. Geoderma, 213, 400-407. [
DOI:10.1016/j.geoderma.2013.08.038]
9. Bennett, L. T., Aponte, C., Baker, T. G., & Tolhurst, K. G. (2014). Evaluating long-term effects of prescribed fire regimes on carbon stocks in a temperate eucalypt forest. Forest Ecology and Management, 328, 219-228. [
DOI:10.1016/j.foreco.2014.05.028]
10. Brockway, D. G., Gatewood, R. G., & Paris, R. B. (2002). Restoring fire as an ecological process in shortgrass prairie ecosystems: initial effects of prescribed burning during the dormant and growing seasons. Journal of Environmental Management, 65(2), 135-152
https://doi.org/10.1006/jema.2002.0540 [
DOI:10.1006/ jema.2002.0540]
11. Chakraborty, S. K., Sanyal, P., & Ray, R. (2023). Ecosystem Services and Values of Wetlands with Special Reference with East Kolkata Wetlands. In Wetlands Ecology: Eco-biological uniqueness of a Ramsar site (East Kolkata Wetlands, India) (227-255). Cham: Springer International Publishing. [
DOI:10.1007/978-3-031-09253-4_4]
12. Dzwonko, Z., Loster, S., & Gawroński, S. (2015). Impact of fire severity on soil properties and the development of tree and shrub species in a Scots pine moist forest site in southern Poland. Forest Ecology and Management, 342, 56-63. [
DOI:10.1016/j.foreco.2015.01.013]
13. Gold, Z.J., Pellegrini, A.F., Refsland, T.K., Andrioli, R.J., Bowles, M.L., Brockway, D.G., Burrows, N., Franco, A.C., Hallgren, S.W., Hobbie, S.E., & Hoffmann, W.A., (2023). Herbaceous vegetation responses to experimental fire in savannas and forests depend on biome and climate. Ecology Letters, 26, 1237-1246. [
DOI:10.1111/ele.14236]
14. Granged, A. J., Zavala, L. M., Jordán, A., & Bárcenas-Moreno, G. (2011). Post-fire evolution of soil properties and vegetation cover in a Mediterranean heathland after experimental burning: A 3-year study. Geoderma, 164(1-2), 85-94. [
DOI:10.1016/j.geoderma.2011.05.017]
15. Haubensak, K., D'antonio, C., & Wixon, D. (2009). Effects of fire and environmental variables on plant structure and composition in grazed salt desert shrublands of the Great Basin (USA). Journal of Arid Environments, 73(6-7), 643-650. [
DOI:10.1016/j.jaridenv.2008.12.020]
16. Hebel, C. L., Smith, J. E., & Cromack Jr, K. (2009). Invasive plant species and soil microbial response to wildfire burn severity in the Cascade Range of Oregon. Applied Soil Ecology, 42(2), 150-159. [
DOI:10.1016/j.apsoil.2009.03.004]
17. Hormozi, H. A., Borna, R., & Zohorian Pordel, M. (2019). Investigating the trend of precipitation changes in Khuzestan province and its impact on Shadegan wetland. Wetland Ecobiology 11(3), 103-117. (In Persian). [
DOI:10.22034/jewe.2020.235307.1369]
18. Hubbert, K., Preisler, H., Wohlgemuth, P., Graham, R., & Narog, M. (2006). Prescribed burning effects on soil physical properties and soil water repellency in a steep chaparral watershed, southern California, USA. Geoderma, 130(3-4), 284-298. [
DOI:10.1016/j.geoderma.2005.02.001]
19. Hurzhii, R. V., Yavorovskyi, P. P., Sydorenko, S. Н., Levchenko, V. B., Tyshchenko, O. M., Tertyshnyi, A. P., & Yakubenko, B. Y., (2021). Trends in forest fuel accumulation in pine forests of Kyiv Polissya in Ukraine. Folia Forestalia Polonica, 63(2), 116-124. [
DOI:10.2478/ffp-2021-0013]
20. Jafari Haghighi, M. (2003). Methods of Soil Analysis: Sampling and Important Physical & Chemical Analysis. Nedaye Zoha Press, Sari, Iran, 236 pp (In Persian).
21. Johnson, D. W., Walker, R. F., Glass, D. W., Stein, C. M., Murphy, J. B., Blank, R. R., & Miller, W. W. (2014). Effects of thinning, residue mastication, and prescribed fire on soil and nutrient budgets in a Sierra Nevada mixed-conifer forest. Forest Science, 60(1), 170-179. [
DOI:10.5849/forsci.12-034]
22. Karimi , S., Pourbabaei, H., & Khodakarami, Y. (2017). The effect of fire on the relative importance (SIV) index and frequency distribution models of plant species in the Zagros forests. Natural Ecosystems of Iran, 8(3), 111-126 (In Persian).
23. Litton, C. M., & Santelices, R. (2003). Effect of wildfire on soil physical and chemical properties in a Nothofagus glauca forest, Chile. Revista Chilena de Historia Natural, 76(4), 529-542. [
DOI:10.4067/S0716-078X2003000400001]
24. Liu, J., Qiu, L., Wang, X., Wei, X., Gao, H., Zhang, Y., & Cheng, J. (2018). Effects of wildfire and topography on soil nutrients in a semiarid restored grassland. Plant and Soil, 428, 123-136. [
DOI:10.1007/s11104-018-3659-9]
25. Lloret, F., Estevan, H., Vayreda, J., & Terradas, J. (2005). Fire regenerative syndromes of forest woody species across fire and climatic gradients. Oecologia, 146, 461-468. [
DOI:10.1007/s00442-005-0206-1]
26. Loeppert, R.H., & Suarez, D.L. (1996). Carbonate and gypsum: 437-474. In: Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., … and Sumner, M.E. (Eds.). Methods of Soil Analysis, Part 3: Chemical Methods. Soil Science Society of America, Inc., American Society of Agronomy, Inc., Madison, Wisconsin, 1390 pp.
27. Lombao, A., Barreiro, A., Carballas, T., Fontúrbel, M., Martín, A., Vega, J., Fernández, C., & Díaz-Raviña, M. (2015). Changes in soil properties after a wildfire in Fragas do Eume Natural Park (Galicia, NW Spain). Catena, 135, 409-418. [
DOI:10.1016/j.catena.2014.08.007]
28. Maynard, D., Paré, D., Thiffault, E., Lafleur, B., Hogg, K., & Kishchuk, B. (2014). How do natural disturbances and human activities affect soils and tree nutrition and growth in the Canadian boreal forest? Environmental Reviews, 22(2), 161-178. [
DOI:10.1139/er-2013-0057]
29. Modaberi, H., & Shokoohi, A. (2020). Determining Water requirement of Anzali Wetland based on Eco-Tourism Indices within the Framework of IWRM. Iranian Journal of Soil and Water Research, 51(10), 2501-2517 (In Persian). [
DOI:10.22059/ijswr.2020.303554.668633]
30. Moghadam, M. R. (2001). Range & Range management. Tehran University Pub., Tehran (In Persian).
31. Montoya, S., Marín, G., & Ortega, E. (2014). Impact of prescribed burning on soil properties in a Mediterranean area (Granada, SW Spain). Spanish Journal of Soil Science: SJSS, 4(1), 88-98. [
DOI:10.3232/SJSS.2014.V4.N1.06]
32. Moreno, G., Obrador, J.J., & Garcia, A. (2007). Impact of evergreen oaks on soil fertility and crop production in intercropped dehesas. Agriculture, Ecosystems and Environment, 119(3-4), 270-280. [
DOI:10.1016/j.agee.2006.07.013]
33. Moya, D., González-De Vega, S., Lozano, E., García-Orenes, F., Mataix-Solera, J., Lucas-Borja, M., & de Las Heras, J. (2019). The burn severity and plant recovery relationship affect the biological and chemical soil properties of Pinus halepensis Mill. stands in the short and mid-terms after wildfire. Journal of Environmental Management, 235, 250-256. [
DOI:10.1016/j.jenvman.2019.01.029]
34. Muqaddas, B., Zhou, X., Lewis, T., Wild, C., & Chen, C. (2015). Long-term frequent prescribed fire decreases surface soil carbon and nitrogen pools in a wet sclerophyll forest of Southeast Queensland, Australia. Science of the Total Environment, 536, 39-47. https:// doi.org/ 10.1016/ j.scitotenv. 2015.07.023 [
DOI:10.1016/j.scitotenv.2015.07.023]
35. Prestes, N. C. C. d. S., Massi, K. G., Silva, E. A., Nogueira, D. S., de Oliveira, E. A., Freitag, R., Marimon, B. S., Marimon-Junior, B. H., Keller, M., & Feldpausch, T. R. (2020). Fire effects on understory forest regeneration in southern Amazonia. Frontiers in Forests and Global Change, 3, 10. [
DOI:10.3389/ffgc.2020.00010]
36. Provencher, L., Forbis, T. A., Frid, L., & Medlyn, G. (2007). Comparing alternative management strategies of fire, grazing, and weed control using spatial modeling. ecological modelling, 209(2-4), 249-263. [
DOI:10.1016/j.ecolmodel.2007.06.030]
37. Rai, P. K. (2008). Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach. International journal of phytoremediation, 10(2), 133-160. [
DOI:10.1080/15226510801913918]
38. Rahimi, S., Sharifi, Z., & Mastrolonardo, G. (2020). Comparative study of the effects of wildfire and cultivation on topsoil properties in the Zagros forest, Iran. Eurasian Soil Science, 53, 1655-1668. [
DOI:10.1134/S1064229320110113]
39. Reyes, O., García-Duro, J., & Salgado, J. (2015). Fire affects soil organic matter and the emergence of Pinus radiata seedlings. Annals of Forest Science, 72, 267-275. [
DOI:10.1007/s13595-014-0427-8]
40. Rhoades, J.D. (1996). Salinity: Electrical conductivity and total dissolved solids: 417-435. In: Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., … and Sumner, M.E. (Eds.). Methods of Soil Analysis, Part 3: Chemical Methods. Soil Science Society of America, Inc., American Society of Agronomy, Inc., Madison, Wisconsin, 1390 pp.
41. Rostamikia, Y., Siahmansour, R., Sharifi, J., & Mohammadi, H. (2022). Effect of fire on density and vegetation composition in wooded rangelands of Vanon Khalkhal region. Iran Nature, 6(6), 77-87 (In Persian). [
DOI:10.22092/irn.2022.355613.1396]
42. Salehi, P., Banj Shafiei, A., Barin, M., & Khezri, K. (2020). Effect of surface fire on dynamic of some chemico-physical properties of forest soil, Sardasht, West Azarbayjan Forest Research and Development, 6(3), 395-410 (In Persian). [
DOI:10.30466/jfrd.2020.120873]
43. Sheidai Karkaj, E., Jafari, I., & R., J. (2019). The effect of fire on some characteristics of rangeland ecosystem in the Southern part of Golestan National Park, Iran. Journal of Range and Watershed Management, 72(3), 755-767. (In Persian) [
DOI:10.22059/jrwm.2019.245647.1185]
44. Shokri, M., Safaian, N. A., & Atrakchali, A. (2002). Investigation of the effects of fire on vegetation variations in Takhti Yeylagh-Golestan National Prak. Iranian Journal of Natural Recourse, 55(2), 273-281 (In Persian).
45. Thomas, G.W. (1996). Soil pH and soil acidity: 475-490. In: Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., … and Sumner, M.E. (Eds.). Methods of Soil Analysis, Part 3: Chemical Methods. Soil Science Society of America, Inc., American Society of Agronomy, Inc., Madison, Wisconsin, 1390 pp.
46. Tortorelli, C.M., Kim, J.B., Vaillant, N.M., Riley, K., Dye, A., Nietupski, T.C., Vogler, K.C., Lemons, R., Day, M., Krawchuk, M.A., & Kerns, B.K., (2023). Feeding the fire: Annual grass invasion facilitates modeled fire spread across Inland Northwest forest‐mosaic landscapes. Ecosphere, 14(2), p.e4413. [
DOI:10.1002/ecs2.4413]
47. Vega, J. A., Fontúrbel, T., Merino, A., Fernández, C., Ferreiro, A., & Jiménez, E. (2013). Testing the ability of visual indicators of soil burn severity to reflect changes in soil chemical and microbial properties in pine forests and shrubland. and Plant Soil, 369, 73-91. [
DOI:10.1007/s11104-012-1532-9]
48. White, C. S., & Loftin, S. R. (2000). Response of 2 semiarid grasslands to cool-season prescribed fire. Journal of Range Management 53(1), 52-61. http://dx.doi.org/10.2307/4003392 [
DOI:10.2307/4003392]
49. Yadollahnejad, S., Jafarian, Z., Heydari, G., & Tamartash, R. (2021). The Effect of Fire on Vegetation and Some Physical and Chemical Properties of Soil (Case study: Varcheshmeh Tusmal Rangeland, Mazandaran). Degradation and Rehabilitation of Natural Land, 2(3), 12-23 (In Persian).
50. Zhang, Y., & Biswas, A. (2017). The effects of forest fire on soil organic matter and nutrients in boreal forests of North America: a review. Adaptive Soil Management: From Theory to Practices, 465-476. [
DOI:10.1007/978-981-10-3638-5_21]