دوره 11، شماره 22 - ( پاییز و زمستان 1402 )                   جلد 11 شماره 22 صفحات 141-132 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Aghajani H, Tajick Ghanbari M A, Jalilvand H. (2023). Biodiversity of Deadwood Beech Macrofungi in the Darabkola Educational Research Forest of Sari. Ecol Iran For. 11(22), 132-141. doi:10.61186/ifej.11.22.121
URL: http://ifej.sanru.ac.ir/article-1-522-fa.html
آقاجانی حامد، تاجیک قنبری محمدعلی، جلیلوند حمید. تنوع زیستی قارچ های ماکروسکوپی خشک‎ دار افتاده راش در جنگل آموزشی پژوهشی دارابکلا، ساری بوم شناسی جنگل های ایران (علمی- پژوهشی) 1402; 11 (22) :141-132 10.61186/ifej.11.22.121

URL: http://ifej.sanru.ac.ir/article-1-522-fa.html


1- گروه علوم و مهندسی جنگل، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران
2- گروه گیاهپزشکی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران
چکیده:   (1492 مشاهده)

چکیده مبسوط
مقدمه و هدف: اهداف مدیریتی جنگل با داشتن دانش کافی در رابطه با حضور خشک­ دارها و اهمیت تنوع ­زیستی می‌تواند به اهداف پایداری خود دست ‌یابد. بنابراین، به­ منظور مدیریت صحیح جنگل به شاخص‌هایی نیاز است که اطلاعات کافی را در رابطه با تنوع­ زیستی و پایش تغییرات ناشی از فعالیت‌های مدیریتی به­ دست آورد. این پژوهش با هدف شناسایی انواع قارچ ­های ماکروسکوپی و بررسی تنوع ­زیستی این قارچ ­ها بر بستر زندگی خودشان یعنی 
خشک­ دارها بود.
مواد و روش‌ها: تعداد 15 اصله خشک­ دارراش به­ صورت تصادفی در جنگل دارابکلا انتخاب شد. تمامی قارچ ­های­ ماکروسکوپی شماره‌گذاری و جمع ­آوری شد و برای شناسایی ریخت­ شناسی به آزمایشگاه قارچ­ شناسی انتقال داده شد. تنوع­ زیستی قارچ ­ها با استفاده از شاخص تنوع شانون­ وینر، شاخص تنوع سیمپسون، شاخص غنا و یکنواختی با نرم افزار PAST محاسبه شد.
یافته‌ها: نتایج به‌دست‌آمده نشان داد که 37 گونه قارچ ماکروسکوپی از 27 جنس و 16 خانواده تشکیل شده است که قارچهای Trametes versicolor، Daldinia concentrica، Trichaptum biforme و Fomes fomentarius به­ ترتیب بیشترین فراوانی و قارچ ­های Hericium coralloides، Ganoderma resinaceum، Ganoderma adspersum و Trametes trogii کم­ترین فراوانی و همچنین خانواده Polyporaceae، Xylariaceae، Ganodermataceae، Pleurotaceae و Schizophyllaceae بیشترین فراوانی و خانواده Pezizaceae و Hericiaceae کم­ترین فراوانی را داشتند. بیشتر قارچ ­ها در مراحل پایانی تجزیه حضور داشته ­اند. نتایج نشان داد که میانگین شاخص تنوع گونه­ ای شانون ­وینر 3/24، تنوع گونه­ ای سیمپسون 0/95، شاخص غنای گونه ­ای مارگالف 6/11 و شاخص منهینیک 1/95 و یکنواختی 0/69 می ­باشد. بررسی شاخص تنوع شانون ­وینر نشان داد قارچ ­های Trichaptum biforme و Trametes versicolor با عدد 1/46 از تنوع بیشتری برخوردار بودند.
نتیجه‌گیری: نتایج این مطالعه نشان داد که برای مدیریت خشک­ دارهای ­افتاده به­ منظور افزایش تنوع ­زیستی ­قارچ­ ها پیشنهاد می شود که خشک­ دار­افتاده در جنگل حفظ شوند تا به احیاء و تکمیل چرخۀ بوم­ سازگان کمک شود.


 
متن کامل [PDF 3064 kb]   (559 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1402/12/21 | پذیرش: 1402/3/15

فهرست منابع
1. Abrego, N., & L. Salcedo. (2013). Variety of woody debris as the factor influencing wood-inhabiting fungal richness and assemblages: Is it a question of quantity or quality? Forest Ecology and Management, 291: 377-385. ( https://doi.org/10.1016/j.foreco.2012.11.025 [DOI:10.1016/j.foreco.2012.11.025)]
2. Abyavi, N., Marvi Mohajer, M. R., Etemad, V., & Asef, M. (2017). The relationship between abundance of wood macrofungi on beech (Fagus orientalis Lipsky) and physiographic factors (Case study: Kheyroud forest, Nowshahr). Iranian Journal of Forest and Range Protection Research, 14(2), 77-85. (In Persian). (10.22092/IJFRPR.2017.109522)
3. Ador, M. A. H., Ahmed, R., Khatun, R., Rahman, M. A., & Haque, M. M. U. (2023). Identification, diversity and host specificity of the wood‐decay fungi in major sawmill depots of north‐eastern Bangladesh. Forest Pathology, 53(1), e12792. ( https://doi.org/10.1111/efp.12792 [DOI:10.1111/efp.12792)]
4. Akhani, H., Djamali, M., Ghorbanalizadeh, A., & Ramezani, E. (2010). Plant biodiversity of Hyrcanian relict forests, N Iran: an overview of the flora, vegetation, palaeoecology and conservation. Pakistan Journal of Botany, 42(1), 231-258. (WOS:000288088600018)
5. Aghajani, H., Marvie Mohadjer, M. R., Asef, M. R. Shirvany, A. (2013). The relationship between abundance of wood macrofungi on Chestnut-leave Oak (Quercus castaneifolia C.A.M.) and Hornbeam (Carpinus betulus L.) and physiographic factors (Case study: Kheyroud forest, Noshahr). Journal of Natural Environment, Iranian Journal of Natural Resources, 66 (1): 1-12 (In Persian). (10.22059/JNE. 013.35399)
6. Aghajani, H., Marvie Mohadjer, M. R., Jahani, A., Asef, M. R., Shirvany, A., & Azarian, M. (2014). Investigation of affective habitat factors affecting on abundance of wood macrofungi and sensitivity analysis using the artificial neural network (case study: Kheyrud forest, Noshahr). Iranian Journal of Forest and Poplar Research, 21(4), 617-628. (In Persian). (10.22092/IJFPR.2014.5135)
7. Aghajani, H., Marvi Mohadjer, M. R., Asef, M. R., & Shirvany, A. (2016). Abundance of wood decay macrofungi in forest ecosystems with different management histories in the Kheyroud forest, Nowshahr, northern Iran. Forest Research and Development, 1(4), 295-305. (In Persian).
8. Aghajani, H., Marvie Mohadjer, M. R., Bari, E., Ohno, K. M., Shirvany, A., & Asef, M. R. (2018). Assessing the biodiversity of wood decay fungi in northern forests of Iran. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 88, 1463-1469. ( https://doi.org/10.1007/s40011-017-0887-3 [DOI:10.1007/s40011-017-0887-3)]
9. Aghajani, H., Hodjati, S. M., Tajick-Ghanbari, M. A., Puormajidian, M. R., and Borhani, A. 2019. The relationship between ectomycorrhizal fungi and some soil chemical properties in beech stands of Farim, Mazandaran province. Iranian Journal of Forest and Poplar Research, 26(4): 459-470 (In Persian). (10.22092/IJFPR.2018.118577)
10. Aghajani, H., Farashiani, M. E., Tajick, G., & Mosazadeh, S. A. (2020). Diversity of medicinal, edible, and poisonous fungi located on the deadwood of beech and their uses. Iranian Journal of Forest and Range Protection Research, 18(1). (In Persian). (10.22092/IJFRPR.2020.127576.1393)
11. Anonymous. (2008). Management Plan of District Felord. Forest, Range and Watershed Management Organiziation, Sari, 210p (In Persian).
12. Armadhan, W. S., Sari, S. P., Aji, M. Y. M. B., Permatasari, D. P., Amalia, B. W., Berlin, G. E., ... & Setyawan, A. D. (2023). The macrofungal diversity and its potential from the karst forest of Kalipoh Village, Kebumen District, Indonesia. Asian Journal of Forestry, 7(2). ( https://doi.org/10.13057/asianjfor/r070204 [DOI:10.13057/asianjfor/r070204)]
13. Bakhshi, M., Zare, R., & Ershad, D. (2022). A detailed account on the statistics of the Fungi and fungus-like taxa of Iran. Mycologia Iranica, 9(2), 1-96. (10.22043/MI.2023.360819.1244)
14. Bari, E., Karimi, K., Aghajani, H., Schmidt, O., Zaheri, S., Tajick-Ghanbary, M. A., & Juybari, H. Z. (2021). Characterizations of tree-decay fungi by molecular and morphological investigations in an iranian alamdardeh forest. Maderas. Ciencia y tecnología, 23. (http://dx.doi.org/10.4067/s0718-221x2021000100433) [DOI:10.4067/S0718-221X2021000100433]
15. Dighton, J., White, J. (2017). The Fungal Community: its Organization and Role in the Ecosystem, fourth ed. CRC Press, Boca Raton, USA. ( [DOI:10.1201/9781315119496)]
16. Ejtehadi, H., Sepehry, A., & Akkafi, H. R. (2009). Method of measuring biodiversity. Ferdousi University of Mashhad Publication, 530pp. (In Persian).
17. Eriksson J., Ryvarden L. (1975). The Corticiaceae of North Europe. Vol. 1-6. Fungiflora, Oslo, Norway
18. Ghanbari S, Fathizadeh O, Aghajani H. (2022). Ecological Relationships of Slope and Elevation with Rowan (Sorbus aucuparia L.) in Arasbaran Forests. ifej; 10 (19):1-8. (In Persian). (20.1001.1.24237140.1401.10.19.20.5) [DOI:10.52547/ifej.10.19.1]
19. Gilbertson, R.L., Ryvarden L., (1986). North American polypores. Oslo: Fungiflora. 885 p.
20. Harmon, M. E., Franklin, J. F., Swanson, F. J., Sollins, P., Gregory, S. V., Lattin, J. D., ... & Cummins, K. W. (1986). Ecology of coarse woody debris in temperate ecosystems. Advances in ecological research, 15, 133-302. ( https://doi.org/10.1016/S0065-2504(08)60121-X [DOI:10.1016/S0065-2504(08)60121-X)]
21. Heilmann-Clausen, J., & M. Christensen. (2003). Fungal diversity on decaying beech logs - implications for sustainable forestry, Biodiversity and Conservation, 12: 953-973. ( https://doi.org/10.1023/A:1022825809503 [DOI:10.1023/A:1022825809503)]
22. Jafari A, Mortazavi S, Hosseini S M. (2022). Investigation the Effectiveness of Protected Areas in Hyrcanian Forests, Iran. ifej; 10 (20) :151-161. (In Persian). (20.1001.1.24237140.1401.10.20.13.0) [DOI:10.52547/ifej.10.20.151]
23. Jomura, M., Yoshida, R., Michalčíková, L., Tláskal, V., & Baldrian, P. (2022). Factors Controlling Dead Wood Decomposition in an Old-Growth Temperate Forest in Central Europe. Journal of Fungi, 8(7), 673. ( https://doi.org/10.3390/jof8070673 [DOI:10.3390/jof8070673)]
24. Juutilainen, K., M. Mnkknen, H. Kotiranta, & P. Halme. (2014). The effects of forest management on wood-inhabiting fungi occupying dead wood of different diameter fractions, Forest Ecology and Management, 313: 283-291. ( https://doi.org/10.1016/j.foreco.2013.11.019 [DOI:10.1016/j.foreco.2013.11.019)]
25. Kahl, T., Arnstadt, T., Baber, K., BЁassler, C., Bauhus, J., Borken, W., Buscot, F., Floren, A., Heibl, C., HessenmЁoller, D., Hofrichter, M., Hoppe, B., Kellner, H., Krüger, D., Linsenmair, K.E., Matzner, E., Otto, P., Purahong, W., Seilwinder, C., Schulze, E.D., Wende, B., Weisser, W.W., Gossner, M.M. (2017). Wood decay rates of 13 temperate tree species in relation to wood properties, enzyme activities and organismic diversities. For. Ecol. Manage. 391, 86-95. https://doi.org/10.1016/j.foreco.2017.02.012 [DOI:10.1016/j. foreco.2017.02.012]
26. Kialashaki, A., and S. Shaabani. (2010). Assessment of plant species diversity in ecological groups of Aghuzchal forest (case study: parcel 7, series 3, watershed districts 46 Kojour), Journal of Sciences and Techniques in Natural Resources, 5(1): 29-38 (In Persian).
27. Kirk, P. M., Cannon, P. F., David, J. C., & Stalpers, J. A. (2001). Ainsworth & Bisby's Dictionary of the Fungi. 9th Edn, 655 pp. UK, Wallingford, CAB International.
28. Kushnevskaya, H., Shorohova, E. (2018). Presence of bark influences the succession of cryptogamic wood-inhabiting communities on conifer fallen logs. Folia Geobot. 53, 175-190. https://doi.org/10.1007/s12224-018-9310-y [DOI:10.1007/s12224-018-9310-y.]
29. Marvie Mohadjer, M.R. (2011). Silviculture. 3nd Edition. University of Tehran press, Tehran, 418p. (In Persian).
30. Müller, H., Blaschke, E.M. (2007). Assemblages of wood-inhabiting fungi related to silvicultural management intensity in beech forests in southern Germany. Eur. J. Forest Res. 126, 513-527. ( https://doi.org/10.1007/s10342-007-0173-7 [DOI:10.1007/s10342-007-0173-7)]
31. Müller, J., Ulyshen, M., Seibold, S., Cadotte, M., Chao, A., Bässler, C., ... & Thorn, S. (2020). Primary determinants of communities in deadwood vary among taxa but are regionally consistent. Oikos, 129(10), 1579-1588. ( https://doi.org/10.1111/oik.07335 [DOI:10.1111/oik.07335)]
32. O'Hanlon, R., & Harrington, T. J. (2012). Macrofungal diversity and ecology in four Irish forest types. Fungal ecology, 5(5), 499-508. [DOI:10.1016/j.funeco.2011.12.008]
33. Pasanen, H., Junninen, K., Boberg, J., Tatsumi, S., Stenlid, J., & Kouki, J. (2018). Life after tree death: Does restored dead wood host different fungal communities to natural woody substrates? Forest Ecology and Management, 409, 863-871. ( https://doi.org/10.1016/j.foreco.2017.12.021 [DOI:10.1016/j.foreco.2017.12.021)]
34. Persiani, A. M., Lombardi, F., Lunghini, D., Granito, V. M., Tognetti, R., Maggi, O., ... & Marchetti, M. (2015). Stand structure and deadwood amount influences saproxylic fungal biodiversity in Mediterranean mountain unmanaged forests. iForest-Biogeosciences and Forestry, 9(1), 115. ( https://doi.org/10.3832/ifor1304-008 [DOI:10.3832/ifor1304-008)]
35. Ranjbar, Z., Mohammadi Goltapeh, E., Zamani, S.M., Pedram, M., Farashiani, E. (2022). The importance of saproxylic fungi and the affecting factors on their diversity and abundance in forest ecosystems - Referring to the most important saproxylic fungi in Asalem forest, Guilan province. Iranian Journal of Forest and Range Protection Research, 20(1), 181-198. (In Persian). (10.22092/IJFRPR.2022.357525.1533)
36. Rudawska, M., Leski, T., Stasińska, M., Karliński, L., Wilgan, R., & Kujawska, M. (2022). The contribution of forest reserves and managed forests to the diversity of macrofungi of different trophic groups in European mixed coniferous forest ecosystem. Forest Ecology and Management, 518, 120274. ( https://doi.org/10.1016/j.foreco.2022.120274 [DOI:10.1016/j.foreco.2022.120274)]
37. Ryvarden, L. (1991). Genera of Polypores. Nomenclature and Taxonomy. Synopsis Fungorum 5, Fungoflora, Oslo, Norway.
38. Ryvarden, L., Gilbertson R.L. (1993). European polypores. Oslo: Fungiflora, 387 p.
39. Sagheb Talebi, K. (2017). Role of dead wood in health of forest ecosystem. Iran Nature, 2(2), 20-25.
40. Smith, F. (1996). Biological diversity, ecosystem stability and economic development. Ecological Economics, 16(3), 191-203. ( https://doi.org/10.1016/0921-8009(95)00096-8 [DOI:10.1016/0921-8009(95)00096-8)]
41. Smith, B., and J.B. Wilson. (1996). A consumer guide to evenness index, Oikos, 76: 70-82. [DOI:10.2307/3545749]
42. Stokland, J.N., Kauserud, H., 2004. Phellinus nigrolimitatus-a wood-decomposing fungus highly influenced by forestry. Forest Ecol. Manag. 87, 333-343. ( https://doi.org/10.1016/j.foreco.2003.07.004 [DOI:10.1016/j.foreco.2003.07.004)]
43. Stokland, J.N., Larsson, K. (2011). Legacies from natural forest dynamics: different effects of forest management on wood-inhabiting fungi in pine and spruce forests. For. Ecol. Manage. 261, 1707-1721. ( https://doi.org/10.1016/j.foreco.2011.01.003 [DOI:10.1016/j.foreco.2011.01.003)]
44. Svoboda M, Pouska V. (2008) Structure of a Central-European mountain spruce old-growth forest with respect to historical development. Forest Ecol Manag 255:2177-2188. (doi: 10.1016/j.foreco.2007.12.031) [DOI:10.1016/j.foreco.2007.12.031]
45. Zuo, J., Berg, M.P., van Hal, J., van Logtestijn, R.S.P., Goudzwaard, L., Hefting, M.M., Poorter, L., Sterck, F.J., Cornelissen, J.H.C. (2020). Fauna community convergence during decomposition of deadwood across tree species and forests. Ecosystems. ( https://doi.org/10.1007/s10021-020-00558-9 [DOI:10.1007/s10021-020-00558-9)]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به بوم‏شناسی جنگل‏های ایران می‌باشد.

طراحی و برنامه نویسی: یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Ecology of Iranian Forest

Designed & Developed by: Yektaweb