دوره 11، شماره 22 - ( پاییز و زمستان 1402 )                   جلد 11 شماره 22 صفحات 100-91 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hatam J, Tabari M, Bahramifar N, Fallah Nosratabad A R. (2023). Growth and Physiological Responses of Populus nigra L. Male and Female Seedlings under Cadmium Stress. ifej. 11(22), 91-100. doi:10.61186/ifej.11.22.91
URL: http://ifej.sanru.ac.ir/article-1-512-fa.html
حاتم جمشید، طبری کوچکسرایی مسعود، بهرامی فر نادر، فلاح نصرت آباد علی رضا. پاسخ‎ های رویشی و فیزیولوژیکی نهال‎ های نر و ماده صنوبر تبریزی (Populus nigra L.) به تنش کادمیوم بوم شناسی جنگل های ایران (علمی- پژوهشی) 1402; 11 (22) :100-91 10.61186/ifej.11.22.91

URL: http://ifej.sanru.ac.ir/article-1-512-fa.html


گروه جنگلداری، دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس
چکیده:   (598 مشاهده)
مقدمه و هدف: تجمع کادمیوم یکی از سمّیترین آلایندهها در خاک، میتواند به کاهش فعالیتهای میکروبی و حاصلخیزی خاک و در نتیجه مرگ و میر گیاهان منجر شود؛ این مسأله همواره نگرانی‌های جهانی را به‌همراه داشته است. پژوهش حاضر با هدف بررسی مقاومت به کادمیوم پایههای نر (کلون 62/167) و ماده (کلون 62/149) صنوبر تبریزی (Populus nigra L.) بر اساس مشخصههای رویشی و فیزیولوژیکی انجام شد.
مواد و روش‌ها: برای اینمنظور، یک آزمایش گلخانه‌ای در قالب طرح بلوک‌های کامل تصادفی با دو عامل غلظت کادمیوم در سه سطح (0، 50، 150 و 200 میلی‌گرم در کیلوگرم خاک) و جنسیت  در دو سطح (پایه نر و پایه ماده صنوبر تبریزی) در یک دوره 120 روزه انجام شد. متغیرهای فیزیولوژیک نهالها از جمله، نرخ فتوسنتز خالص، نرخ تعرّق، هدایت روزنهای، کارایی مصرف آب، پتانسیل آبی، هدایت مزوفیلی و غلظت CO2 درون سلولی و مشخصههای رویشی از جمله قطر و ارتفاع نهالها، زی‌توده کل و سطح برگ مورد بررسی قرار گرفت. تیمار تنش آلودگی در اوایل خرداد از طریق آبیاری با محلول نمک کادمیوم به‌صورت هفتگی و بهمدت پنج هفته اول انجام شد. پس از آن، آبیاری نهالها با آب باران با رعایت ظرفیت زراعی خاک در فواصل سه روزه تا پایان دوره (اوایل مهر) صورت گرفت.
یافته‌ها: صرفنظر از جنس پایه، با افزایش غلظت کادمیوم، سطح برگ و رویش ارتفاع نهالها کاهش یافت. در تیمار شاهد، بیشترین رویش ارتفاع (30/4 سانتی‌متر) و سطح برگ (51/8 سانتی‌متر مربع)، و در تیمار غلظت 50 میلی‌گرم در کیلوگرم کادمیوم، بیشترین زی‌توده کل نهال (59/2 گرم) مشاهده شد. صرف نظر از غلظت کادمیوم، اندازه رویش قطر یقه (نر 2/1، ماده 2 میلی‌متر)، رویش ارتفاع نهال (نر 21/5، ماده 19/9 سانتی‌متر)، سطح برگ (نر 43/08 ، ماده 43/64 سانتی‌متر مربع)، زی‌توده کل نهال (نر 46/48، ماده 44/19 گرم)، کارایی مصرف آب (نر 0/31، ماده 0/26 میکرومول بر میلی‌مول)، هدایت مزوفیلی (نر 0/003، ماده 0/002 مول بر متر مربع در ثانیه) و هدایت روزنه‌ای (نر 0/45، ماده 0/39 مول بر مترمربع در ثانیه) در جنس نر بیشتر از جنس ماده بود و تنها، مقدار تعرق (نر 3/31، ماده 4/01 میلی‌مول بر مترمربع در ثانیه) در جنس ماده بیشتر از جنس نر بوده است. اگرچه با افزایش غلظت کادمیوم، اندازههای فتوسنتز، پتانسیل آب، کارایی مصرف آب، قطر، ارتفاع، سطح برگ و زی‌توده روند کاهشی داشت؛ اما به‌طور کلی، نهال‌های هر دو جنس در غلظت‌های بالای کادمیوم فعالیتهای فیزیولوژیکی و رویشی خود را تا حدودی حفظ کردند.
نتیجه‌گیری: از نتایج این تحقیق استنتاج میشود که هر دو پایه، تحمل به غلظتهای بالای کادمیوم را دارند؛ با اینوجود، برای جنگلکاری با صنوبر تبریزی در خاکهای آلوده به کادمیوم، استفاده از پایه نر (کلون 62/167) می‌تواند موفقیت بیشتری نسبت به پایه ماده (کلون 62/149) بهدنبال داشته باشد.
متن کامل [PDF 2691 kb]   (82 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اکولوژی جنگل
دریافت: 1402/3/20 | پذیرش: 1402/6/26 | انتشار: 1402/11/14

فهرست منابع
1. Alvarez-Cansino, L., Zunzunegui, M., Díaz Barradas, M. C. & Esquivias, M.P. (2010). Gender-specific costs of reproduction on vegetative growth and physiological performance in the dioecious shrub Corema album. Annals of Botany, 106(6), 989-998. [DOI:10.1093/aob/mcq197]
2. Baize, D., Bellanger, L. & Tomassone, R. (2009). Relationships between concentrations of trace metals in wheat grains and soil. Agronomy for sustainable development, 29, 297-312. [DOI:10.1051/agro:2008057]
3. Baumann, H.A., Morrison, L. & Stengel, D.B., 2009. Metal accumulation and toxicity measured by PAM-chlorophyll fluorescence in seven species of marine macroalgae. Ecotoxicology and Environmental Safety, 72(4):1063-1075. [DOI:10.1016/j.ecoenv.2008.10.010]
4. Borghi, M., Tognetti, R., Monteforti, G. & Sebastiani, L. (2008). Responses of two poplar species (Populus alba and Populus x canadensis) to high copper concentrations. Environmental and Experimental Botany, 62(3), 290-299. [DOI:10.1016/j.envexpbot.2007.10.001]
5. Castagna, A., Di Baccio, D., Tognetti, R., Ranieri, A. & Sebastiani, L. (2013). Differential ozone sensitivity interferes with cadmium stress in poplar clones. Biologia plantarum, 57(2), 313-324. [DOI:10.1007/s10535-012-0274-0]
6. Castiglione, S., Franchin, C., Fossati, T., Lingua, G., Torrigiani, P. & Biondi, S. (2006). High zinc concentrations reduce rooting capacity and alter metallothionein gene expression in white poplar - (Populus alba L. cv. Villafranca). Chemosphere, 67, 1117- 1126. [DOI:10.1016/j.chemosphere.2006.11.039]
7. Chaffei, C., Gouia, H. & Ghorbel, M.H. (2003). Nitrogen metabolism in tomato plants under cadmium stress. Journal of Plant Nutrition, 26, 1617-1634. [DOI:10.1081/PLN-120022372]
8. Chen, L., Zhang, D., Yang, W., Liu, Y., Zhang, L. & Gao, S. (2016). Sex-specific responses of Populus deltoides to Glomus intraradical colonization and Cd pollution. Chemosphere, 155, 196-206. [DOI:10.1016/j.chemosphere.2016.04.049]
9. DalCorso, G., Farinati, S., Maistri, S., & Furini, A. (2008). How plants cope with cadmium: staking all on metabolism and gene expression. Journal of integrative plant biology, 50(10), 1268-1280. [DOI:10.1111/j.1744-7909.2008.00737.x]
10. de Araujo, R.P., de Almeida, A.A.F., Pereira, L.S., Mangabeira, P.A., Souza, J.O., Pirovani, C.P., Ahnert, D. & Baligar, V.C. (2017). Photosynthetic, antioxidative, molecular and ultrastructural responses of young cacao plants to Cd toxicity in the soil. Ecotoxicology and Environmental Safety, 144, 148-157. [DOI:10.1016/j.ecoenv.2017.06.006]
11. Dezhban, A., Shirvany, A., Attarod, P. & Delshad, M. (2015). Response of chlorophyll fluorescence and growth of Celtis caucasica and Robinia pseudoacacia seedlings to the cadmium stress. Journal of Forest Sustainable Development, 1(4), 352-363 (In persian).
12. Di Lonardo S., Capuana M., Arnetoli M., Gabbrielli R. & Gonnelli C. (2010). Exploring the metal phytoremediation potential of three Populus alba L. clones using an in vitro screening, Environ. Sci. Pollut. Res, 18(1), 82-80. [DOI:10.1007/s11356-010-0354-7]
13. Di Baccio, D., Castagna, A., Tognetti, R., Ranieri, A., & Sebastiani, L. (2014). Early responses to cadmium of two poplar clones that differ in stress tolerance. Journal of plant physiology, 171(18), 1693-1705. [DOI:10.1016/j.jplph.2014.08.007]
14. Durand, T.C., Sergeant, K., Planchon, S., Carpin, S., Label, P., Morabito, D., Hausman, J.F. & Renaut, J. (2010). Acute metal stress in Populus tremula× P. alba (717‐1B4 genotype): Leaf and cambial proteome changes induced by cadmium2+. Proteomics, 10(3), 349-368. [DOI:10.1002/pmic.200900484]
15. El Rasafi, T., Oukarroum, A., Haddioui, A., Song, H., Kwon, E.E., Bolan, N., Tack, F.M., Sebastian, A., Prasad, M.N.V. & Rinklebe, J. (2022). Cadmium stress in plants: A critical review of the effects, mechanisms, and tolerance strategies. Environmental Science and Technology, 52(5), 675-726. [DOI:10.1080/10643389.2020.1835435]
16. Emami, A. S., Tabari Kouchaksaraei, M., Bahramifar, N. & Salehi, A. (2016). Gas exchange responses of two poplar clones (Populus euramericana (Dode) Guinier 561/41 and Populus nigra Linnaeus 63/135) to lead toxicity. Journal of Forest Science, 62(9), 422-428. [DOI:10.17221/91/2016-JFS]
17. Gharebaghi, N., Jafari, H., Saidnematpor, F., Taheri, M. & Sohrabi, E. (2012). Locating related genes is an effective physiological indicator of tolerance to cadmium in the Hordeum Vulgare. In Proceedings of 1th National conference (In Persian).
18. Gong, Z., Duan, Y., Liu, D., Zong, Y., Zhang, D., Shi, X., ... & Li, P. (2023). Physiological and transcriptome analysis of response of soybean (Glycine max) to cadmium stress under elevated CO2 concentration. Journal of Hazardous Materials, 448, 130950. [DOI:10.1016/j.jhazmat.2023.130950]
19. Greger, M., & Landberg, T. (2008). Role of rhizosphere mechanisms in Cd uptake by various wheat cultivars. Plant and soil, 312(1-2), 195-205. [DOI:10.1007/s11104-008-9725-y]
20. Hamada, H., Farfan-Vignolo, E.R., Vos, D.D. & Han, A., (2015). Elevated CO2 mitigates drought and temperature-induced oxidative stress differently in grasses and legumes. Plant Science, 231, 1-10. [DOI:10.1016/j.plantsci.2014.11.001]
21. Hao, L., Chen, L., Zhu, P., Zhang, J., Zhang, D., Xiao, J., Xu, Z., Zhang, L., Liu, Y., Li, H. & Yang, H. (2020). Sex-specific responses of Populus deltoides to interaction of cadmium and salinity in root systems. Ecotoxicology and Environmental Safety, 195, 110437. [DOI:10.1016/j.ecoenv.2020.110437]
22. Hasan, S.A., Fariduddin, Q., Ali, B., Hayat, S. & Ahmad, A. (2009). Cadmium: toxicity and tolerance in plants. J Environ Biol, 30(2), 165-174.
23. Hattab, S. & Dridi, B. (2009). Photosynthesis and growth responses of pea (Pisum sativum L.) under heavy metals stress. Journal of Environmental Sciences, 21, 1552-1556. [DOI:10.1016/S1001-0742(08)62454-7]
24. Hu, Y., Nan, Z., Jin, C., Wang, N. & Luo, H. (2014). Phytoextraction potential of poplar (Populus alba L. var. pyramidalis Bunge) from calcareous agricultural soils contaminated by cadmium. International journal of phytoremediation, 16(5), 482-495. [DOI:10.1080/15226514.2013.798616]
25. Iqbal, N. & Khan, N.A. (2010). Variation in growth, photosynthesis functions and yield of five mustard (Brassica juncea L.) cultivars under high cadmium stress. Plant Stress, 4, 87-93.
26. Jiang, H., Korpelainen, H., & Li, C. (2013). Populus yunnanensis males adopt more efficient protective strategies than females to cope with excess zinc and acid rain. Chemosphere, 91(8), 1213-1220. [DOI:10.1016/j.chemosphere.2013.01.041]
27. Juvany, M. & Munne-Bosch, S. (2015). Sex-related differences in stress tolerance in dioecious plants: a critical appraisal in a physiological context. Journal of experimental botany, 66(20), 6083-6092. [DOI:10.1093/jxb/erv343]
28. Kersten, B., Pakull, B. & Fladung, M. (2017). Genomics of sex determination in dioecious trees and woody plants. Trees, 31, 1113-1125. [DOI:10.1007/s00468-017-1525-7]
29. Khan, N.A., Samiullah, Singh, S. & Nazar, R. (2006). Activities of antioxidative enzymes, sulphur assimilation, photosynthetic activity and growth of wheat (Triticum aestivum) cultivars differing in yield potential under cadmium stress. Journal of Agronom and Crop Science, 193, 435-444. [DOI:10.1111/j.1439-037X.2007.00272.x]
30. Khodadust, A., Tabari, M., Sadati, S.E. & Vicente, O. (2023). Sexual response of black poplar seedlings to water deficit stress. Iranian Journal of Rangelands and Forests Plant Breeding and Genetic Research, 30(2), 230-241.
31. Kundu, S. (2023). Physiological and Biochemical Responses to Salt and Cadmium Stress and It's Amelioration by Exogenous Application of Polyamines in Hybrid Poplar (Populus nigra x maximowiczii, Clone NM6) (Doctoral dissertation, University of New Hampshire).
32. Liu, M., Bi, J., Liu, X., Kang, J., Korpelainen, H., Niinemets, U. & Li, C. (2020). Microstructural and physiological responses to cadmium stress under different nitrogen levels in Populus cathayana females and males. Tree Physiology, 40(1), 30-45. [DOI:10.1093/treephys/tpz115]
33. Lin, Y.F., & Aarts, M.G. (2012). The molecular mechanism of zinc and cadmium stress response in plants. Cellular and molecular life sciences, 69(19), 3187-3206. [DOI:10.1007/s00018-012-1089-z]
34. Lomaglio, T., Rocco, M., Trupiano, D., De Zio, E., Grosso, A., Marra, M., Delfine, S., Chiatante, D., Morabito, D. & Scippa, G.S. (2015). Effect of short-term cadmium stress on Populus nigra L. detached leaves. Journal of Plant Physiology, 182, 40-48. [DOI:10.1016/j.jplph.2015.04.007]
35. Mobin, M. & Khan, N.A. (2007). Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. Journal of Plant Physiology, 164, 601-610. [DOI:10.1016/j.jplph.2006.03.003]
36. Mokarram-Kashtiban, S., Hosseini, S.M., Tabari Kouchaksaraei, M. & Younesi, H. (2019). Bioavailability of Soil Heavy Metals as Influenced by Biochar and Rhizosphere Bacteria in the White Willow Phytoremediation Process. Applied Soil Research, 7(4), 196-211.
37. Nikolic, N., Zoric, L., Cvetkovic, I., Pajevic, S., Borisev, M., Orlovic, S. & Pilipovic, A. (2017). Assessment of cadmium tolerance and phytoextraction ability in young Populus deltoides L. and Populus euramericana plants through morpho-anatomical and physiological responses to growth in cadmium enriched soil. iForest-Biogeosciences and Forestry, 10(3), 635. [DOI:10.3832/ifor2165-010]
38. Ohya, I., Nanami, S. & Itoh, A. (2017). Dioecious plants are more precocious than cosexual plants: A comparative study of relative sizes at the onset of sexual reproduction in woody species. Ecology and evolution, 7(15), 5660-5668. [DOI:10.1002/ece3.3117]
39. Pankovic, D., Plesnicar, M., Arsenijevic-Maksimovic, I., Petrovic, N., Sakac, Z. & Kastori, R. (2000). Effects of nitrogen nutrition on photosynthesis in Cd-treated sunflower plants. Annals of Botany, 86(4), 841-847. [DOI:10.1006/anbo.2000.1250]
40. Parad, G.A., Kouchaksaraei, M. T., Striker, G.G., Sadati, S.E. & Nourmohammadi, K. (2016). Growth, morphology and gas exchange responses of two-year-old Quercus castaneifolia seedlings to flooding stress. Scandinavian Journal of Forest Research, 31(5), 458-466. [DOI:10.1080/02827581.2015.1072240]
41. Payne, R.W. (2009). GenStat. Wiley Interdisciplinary Reviews: Computational Statistics, 1(2), 255-258. [DOI:10.1002/wics.32]
42. Polle, A., Klein, T., & Kettner, C. (2013). Impact of cadmium on young plants of Populus euphratica and P. canescens, two poplar species that differ in stress tolerance. New Forests, 44(1), 13-22. [DOI:10.1007/s11056-011-9301-9]
43. Poschenrieder, C., Gunse, B. & Barcelo, J. (1989). Influence of cadmium on water relations, stomatal resistance, and abscisic acid content in expanding bean leaves. Plant Physiology, 90(4), 1365-1371. [DOI:10.1104/pp.90.4.1365]
44. Prasad, M.N.V. & Strzalka, K. (1999). Impact of heavy metals on photosynthesis. In: M.N.V. Prasad & J. Hagemeyer (ed): Heavy Metal Stress in Plants. Heidelberg: Springer, 117-138. [DOI:10.1007/978-3-662-07745-0_6]
45. Rahmani, A., Asghari, A., Jafary, H. & Sofalian, O. (2020). Physiological and morphological responses of two barley varieties and their progenies to toxic effects of Lead. Journal of Plant Production, 27(3), 205-227.
46. Renner, S.S. (2014). The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. American Journal of botany, 101(10), 1588-1596. [DOI:10.3732/ajb.1400196]
47. Rohi, A. & Marde, S.S., A. (2009). A study on gas exchange in various genotypes of wheat exposed to drought stress. Scientific Magazine of Sapling & Seeds, 24, 45-62.
48. Rodriguez, R.N. (2004). An Introduction to ODS for Statistical Graphics in SAS 9.1. In Proceedings of the Twenty-ninth Annual SAS Users Group International Conference. Cary, NC: SAS Institute Inc.
49. Salehi, A., Tabari Kouchaksaraei, M., Goltapeh, E. M., Shirvany, A. & Mirzaei, J. (2016). Effect of mycorrhizal inoculation on black and white poplar in a lead-polluted soil. Journal of Forest Science, 62(5), 223-228. [DOI:10.17221/23/2016-JFS]
50. Saradhi, P.P. (1991). Proline accumulation under heavy metal stress. Journal of Plant Physiology, 138(5), 554-558. [DOI:10.1016/S0176-1617(11)80240-3]
51. Sharma, P. & Dubey, R.S. (2005). Lead toxicity in plants. Brazilian journal of plant physiology, 17, 35-52. [DOI:10.1590/S1677-04202005000100004]
52. Sun, H., Fu, J. & Yang, F. (2020). Effect of Arbuscular Mycorrhizal Fungi on Switchgrass Growth and Mineral Nutrition in Cadmium-Contaminated Soil. Polish Journal of Environmental Studies, 29(2), 1369-1377. [DOI:10.15244/pjoes/94012]
53. Tuskan, G.A., DiFazio, S., Jansson, S., Bohlmann, J., Grigoriev, I., Hellsten, U., Putnam, N., Ralph, S., Rombauts, S., Salamov, A. & Schein, J. (2006). The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 313(5793), 1596-1604. [DOI:10.1126/science.1128691]
54. Villiers, F., Ducruix, C., Hugouvieux, V., Jarno, N., Ezan, E. & Garin, J. (2011). Investigating the plant response to cadmium exposure by proteomic and metabolomic approaches. Proteomics, 11(9), 1650-1663. [DOI:10.1002/pmic.201000645]
55. Weigel, H.J. & Jager, H.J. (1980). Subcellular distribution and chemical forms of cadmium in bean plants. Plant Physiology, 65, 480-482. [DOI:10.1104/pp.65.3.480]
56. Wu, F., Yang, W. Zhang, J. & Zhou, L. (2010). Cadmium accumulation and growth responses of a poplar (Populus deltoids×Populus nigra) in cadmium contaminated purple soil and alluvial soil. Journal of Hazardous Materials, 177, 268-273. [DOI:10.1016/j.jhazmat.2009.12.028]
57. Xu, X., Yang, F.A.N., Xiao, X., Zhang, S., Korpelainen, H. & Li, C. (2008). Sex‐specific responses of Populus cathayana to drought and elevated temperatures. Plant, cell & environment, 31(6), 850-860. [DOI:10.1111/j.1365-3040.2008.01799.x]
58. Xu, S., Li, B., Li, P., He, X., Chen, W., Yan, K., Li, Y. & Wang, Y. (2019). Soil high Cd exacerbates the adverse impact of elevated O3 on Populus alba 'Berolinensis' L. Ecotoxicology and environmental safety, 174, 35-42. [DOI:10.1016/j.ecoenv.2019.02.057]
59. Yang, C.H., Sun, Y., Wang, Y.Q., Yang, P. & Wang, L. (2023). Genomic-Wide Analysis Identifies the PI-PLC Gene Family and Expression of Its Member PsnPI-PLC6 Confers Cadmium Tolerance in Transgenic Tobacco Plants. Russian Journal of Plant Physiology, 70(3), 31. [DOI:10.1134/S1021443722602609]
60. Yang, Y., Liu, Q., Han, C., Qiao, Y.Z., Yao, X.Q. & Yin, H.J. (2007). Influence of water stress and low irradiance on morphological and physiological characteristics of Picea asperata seedlings. Photosynthetica, 45(4), 613-619. [DOI:10.1007/s11099-007-0106-1]
61. Zalesny Jr. R.S., Bauer, E.O., Hall, R.B., Zalesny, J.A., Kunzman, J., Rog, C.J. & Riemenschneider, D.E. (2005). Clonal variation in survival and growth of hybrid poplar and willow in an in-situ trial on soils heavily contaminated with petroleum hydrocarbons, International Journal of Phytoremediation, 7, 177-197. [DOI:10.1080/16226510500214632]
62. Zarik, L., Meddich, A., Hijri, M., Hafidi, M., Ouhammou, A., Ouahmane, L., Duponnois, R. & Boumezzough, A. (2016). Use of arbuscular mycorrhizal fungi to improve the drought tolerance of Cupressus atlantica G. Comptes Rendus Biologies, 339(5-6), 185-196. [DOI:10.1016/j.crvi.2016.04.009]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به بوم‏شناسی جنگل‏های ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Ecology of Iranian Forest

Designed & Developed by : Yektaweb