دوره 11، شماره 22 - ( پاییز و زمستان 1402 )                   جلد 11 شماره 22 صفحات 87-73 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jafarian N, Mirzaei J, Omidipour R, Kooch Y. (2023). Identification of Arbuscular Mycorrhizal Fungi Coexist with Plant Species in Different Habitats of Iranian Oak (Quercus brantii Lindl.) in Ilam. Ecol Iran For. 11(22), 73-87. doi:10.61186/ifej.11.22.67
URL: http://ifej.sanru.ac.ir/article-1-492-fa.html
جعفریان ناهید، میرزایی جواد، امیدی پور رضا، کوچ یحیی. شناسایی قارچ‎ های میکوریز آربوسکولار همزیست با گونه ‎های گیاهی در رویشگاه‎های مختلف بلوط ایرانی (Quercus brantii Lindl.) در ایلام بوم شناسی جنگل های ایران (علمی- پژوهشی) 1402; 11 (22) :87-73 10.61186/ifej.11.22.67

URL: http://ifej.sanru.ac.ir/article-1-492-fa.html


1- گروه علوم جنگل، دانشکده کشاورزی، دانشگاه ایلام، ایلام، ایران
2- گروه مرتع و آبخیزداری، دانشکده کشاورزی، دانشگاه ایلام، ایلام، ایران
3- دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس، نور، ایران
چکیده:   (1413 مشاهده)
مقدمه و هدف: قارچهای میکوریز آربوسکولار یک جز مهم از میکروفلور خاک را تشکیل میدهند و با 80 در صد از گونههای گیاهی همزیستی دارند. پژوهش حاضر با هدف شناسایی قارچهای میکوریز آربوسکولار در سه رویشگاه (شنهچیر، ایلام و ملکشاهی) با شرایط اقلیمی مختلف در دو جهت دامنۀ شمال و جنوب در جنگلهای استان ایلام انجام گرفت.
مواد و روشها: بهمنظور نمونه‎ برداری خاک، در هر رویشگاه و در هر جهت 20 نمونه خاک ترکیبی در دو جهت شمالی و جنوبی برداشت شد. در مجموع 60 قطعه نمونه برای هر سه رویشگاه بر اساس طرح نمونهبرداری کاملاً تصادفی از عمق 20-0 سانتی‎متر در فصل بهار برداشت شد. استخراج اسپور قارچهای میکوریز با استفاده از روش الک مربوط و سانتریفیوژ کردن با ساکارز و شناسایی قارچها بر اساس اندازه‎ گیری ویژگیهای ریخت شناسی و با استفاده از کلید شناسایی و سایتهای اینترنتی معتبر انجام ‎شد. درصد فراوانی گونههای قارچی با استفاده از درصد اسپورهای متعلق به یک گونه قارچی نیز محاسبه شد. برای تعیین درصد تشابه گونههای قارچی در مناطق و جهتهای شیب مختلف در هر رویشگاه از نمودار وون استفاده شد.
یافتهها: نتایج این مطالعه نشان داد که در مجموع 39 گونه قارچ میکوریز آربوسکولار متعلق به 11 جنس در سه رویشگاه مورد مطالعه و دو جهت شناسایی شدند. 36 گونه قارچی متعلق به 11 جنس در رویشگاه ایلام، 37 گونه قارچ میکوریز متعلق به 11 جنس در ملکشاهی و 34 گونه قارچی متعلق به 10 جنس در شنه­ چیر شناسایی شد. از 11 جنس شناسایی شده بالاترین درصد فراوانی نسبی مربوط به جنسهای Acaulospora و Glomus بود. در هر سه رویشگاه و در دو جهت شمالی و جنوبی دو گونه Glomus nanolumen و  Acaulospora lacunosaبالاترین درصد فراوانی گونه قارچی را داشتند. نتایج تشابه گونهها در مناطق مختلف نشان داد که 30 گونه قارچ میکوریز معادل %76/92 گونهها در بین مناطق مشترک بودند و یک گونه اندمیک (Glomus macrocarpum) در رویشگاه ملکشاهی وجود داشت. نتایج نشان داد تراکم اسپور در مناطق مورد مطالعه اختلاف معنیداری داشتند (000/0=p) که در رویشگاه ملکشاهی و شنهچیر بیشتر از ایلام بود. میانگین تراکم اسپور در تمام مناطق در جهت جنوبی بیشتر ار شمالی بود. میانگین تراکم اسپورها در مناطق مختلف از 111/20 در ایلام تا 140/25 در ملکشاهی و در بین جهتهای مختلف از 105/60 در شمال ایلام تا 150/90 در جهت جنوبی ملکشاهی متغیر بود.
نتیجهگیری: نتیجه مطالعه حاضر نشان داد که قارچهای میکوریز در مناطق و جهتهای مختلف از نظر تعداد گونه قارچی، پراکنش و تعداد اسپور متفاوت بودند و بیشترین تراکم اسپور در جهتهای جنوبی و در منطقه ملکشاهی مشاهده شد.

 
واژه‌های کلیدی: اسپور، اقلیم، جهت شیب، میکوریز، همزیستی
متن کامل [PDF 5071 kb]   (287 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اکولوژی جنگل
دریافت: 1401/10/4 | پذیرش: 1402/1/15

فهرست منابع
1. Aazami, A., Hosseni, A., and Hoseianzadeh. J. (2018). "The effect of depth and aspect on soil moisture in dieback affected oak forests (Case study: Meleh siah Forest, Ilam Province). Ecology of Iranian Forests, 6(11), 41-50. (In Persian). ‎DIO: 10.29252/ifej.6.11.41
2. Alguacil, M., Torrecillas E., Lozano Z., & Roldán, A. (2015). "Arbuscular mycorrhizal fungi communities in a coral cay system (Morrocoy, Venezuela) and their relationships with environmental variables." Science of the Total Environment, 505, 805-813. [DOI:10.1016/j.scitotenv.2014.10.030]
3. Aminian Nasab, P., Sedaqhati, E., Hosseini S., and Saberi Riseh, R. 2021. "Investigation of climate, Soil physico-chemical properties and host on Arbuscular mycorrhizal fungi activity in Rafsanjan." Biological control of pests and plant diseases, 9(2), 216-197 (In Persian). DIO: 10.22059/JBIOC.2022.327964.308
4. Augé, R. M. (2001). "Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis." Mycorrhiza, 11(1), 3-42.
5. Bainard, L. D., M. Koch, A., & Gordon, A.M. (2011). "Influence of trees on the spatial structure of arbuscular mycorrhizal communities in a temperate tree-based intercropping system." Agriculture, Ecosystems & Environment, 144(1), 13-20. [DOI:10.1016/j.agee.2011.07.014]
6. Berruti, A., Lumini, E., Balestrini R., & Bianciotto. V. (2016). "Arbuscular mycorrhizal fungi as natural biofertilizers: let's benefit from past successes." Frontiers in microbiology, 6, 1559. DIO: 10.3389/fmicb.2015.01559
7. Beyene, S., Ricken, B., & Hoefner. W. (1996). "Effects of arbuscular mycorrhizal fungus on dry matter yield, as well as P and K concentrations in maize (Zea mays L.) at increasing levels of P supply." Angewandte Botanik (Germany).
8. Biermann, B. & Linderman, R. (1983). "Use of vesicular‐arbuscular mycorrhizal roots, intraradical vesicles and extraradical vesicles as inoculum." New Phytologist, 95(1), 97-105. [DOI:10.1111/j.1469-8137.1983.tb03472.x]
9. Bouamri, R., Dalpe, Y., Serrhini, M. N., & Bennani, A. (2006). "Arbuscular mycorrhizal fungi species associated with rhizosphere of Phoenix dactylifera L. in Morocco." African Journal of Biotechnology, 5(6), 510-516.
10. Chaudhry, M. S., Saeed, M. & Nasim, F. (2013). "Soil chemical heterogeneity may affect the diversity of arbuscular-mycorrhizal fungi in the rhizosphere of Tamarix aphylla under arid climate." Analele Stiintifice ale Universitatii Alexandru Ioan Cuza din Iasi. Sectiunea II A, Biologie Vegetala, 59(2).
11. Cheng, L., Booker, F.L., Tu, C., Burkey, K.O., Zhou, L., Shew, H.D., Rufty, T.W. & Hu, S. (2012). "Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2." Science, 337(6098), 1084-1087. DOI: 10.1126/science.1224304
12. Classen, A. T., Sundqvist, M.K., Henning, J.A., Newman, G.S., Moore, J.A.M., Cregger, M.A., Moorhead, L.C., & Patterson, C.M. (2015). "Direct and indirect effects of climate change on soil microbial and soil microbial‐plant interactions: What lies ahead?" Ecosphere, 6(8), 1-21. DOI:10.1890/ES15-00217.1
13. Da Silva, I. R., DeMello, C.M.A., Neto, R.A.F., da Silva, D.K.A., de Melo, A.L., Oehl, F. & Maia, L.C. (2014). "Diversity of arbuscular mycorrhizal fungi along an environmental gradient in the Brazilian semiarid." Applied Soil Ecology, 84, 166-175. [DOI:10.1016/j.apsoil.2014.07.008]
14. De Oliveira, J. R. G., de Resende, M., de Melo, N.F., & Yano-Melo, A.M. (2017). " Symbiotic compatibility between arbuscular mycorrhizal fungi (autoctone or exotic) and three native species of the Caatinga in different phosphorus levels." Acta Scientiarum. Biological Sciences, 39(1), 59-69. [DOI:10.4025/actascibiolsci.v39i1.33486]
15. Drigo, B., Kowalchuk, G.A., & van Veen, J.A. (2008). "Climate change goes underground: effects of elevated atmospheric CO 2 on microbial community structure and activities in the rhizosphere." Biology and Fertility of Soils, 44, 667-679. DOI:10.1007/s00374-008-0277-3
16. Dumbrell, A. J., Ashton, P.D., Aziz, N., Feng, G., Nelson, M., Dytham, C., Fitter, A. H., & Helgason, T. (2011). "Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing." New Phytologist, 190(3), 794-804. DOI: 10.1111/j.1469-8137.2010.03636.x
17. Fazlollahi Mohammadi, M., Kooch, Y., & Said-Pullicino, D. (2016). "Slope gradient and shape effects on soil profiles in the northern mountainous forests of Iran." Eurasian soil science, 49, 1366-1374. DOI:10.1134/S1064229316120061
18. Garg, N., & Chandel, S. (2011). "Effect of mycorrhizal inoculation on growth, nitrogen fixation, and nutrient uptake in Cicer arietinum (L.) under salt stress." Turkish Journal of Agriculture and Forestry, 35(2), 205-214. DOI:10.3906/tar-0908-12
19. Gavito, M. E., Curtis, P.S., Mikkelsen T.N., & Jakobsen, I. (2000). "Atmospheric CO2 and mycorrhiza effects on biomass allocation and nutrient uptake of nodulated pea (Pisum sativum L.) plants." Journal of Experimental Botany, 51(352), 1931-1938. [DOI:10.1093/jexbot/51.352.1931]
20. Haidari, R. H., Sohrabi Zadeh, A., and Haidari, M. 2019. "Effect of Physiographic Factors on Plant Biodiversity in the Central Zagros Forests (Case Study: Educational Forest of Razi University of Kermanshah)." Ecology of Iranian Forest, 7(13), 66-75 (In Persian). DIO: 10.29252/ifej.7.13.66
21. Hart, M. M., Antunes, P.M., Chaudhary, V.B., & Abbott, L.K. (2018). "Fungal inoculants in the field: Is the reward greater than the risk?" Functional Ecology, 32(1), 126-135. [DOI:10.1111/1365-2435.12976]
22. Hayman, D. (1982). "Influence of soil and fertility on activity and survival of vesicular-arbuscular mycorrhizal fungi." Phytopathol. 72: 1119-1125.
23. Hildebrandt, U., M. Regvar and H. Bothe. 2007. "Arbuscular mycorrhiza and heavy metal tolerance." Phytochemistry, 68(1), 139-146. DOI: 10.1016/j.phytochem.2006.09.023
24. Hodge, A., & Storer, K. (2015). "Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems." Plant and soil, 386, 1-19. DOI:10.1007/s11104-014-2162-1
25. Islam, M. N., Germida, J.J., & Walley, F.L. (2019). "Responses of arbuscular mycorrhizal fungal communities to soil core transplantation across Saskatchewan prairie climatic regions." Canadian Journal of Soil Science, 100(1), 81-96. DOI:10.1139/cjss-2019-0053
26. Jafarian, N., Mirzae, J., Morad, M., and Heydari, M. 2018. "Biodiversity and colonization of arbuscular mycorrhizal fungi with some species of zagros forest." Forest and Wood Products, 71(1), 35-47 (In Persian). DIO: 10.22059/JFWP.2018.245316.875
27. Jafarlou, M.B., Badehian, Z. and Delpasand, J. (2019). Effect of Arbuscular Mycorrhizal Fungi colonization on Growth and Physiology of Calotropis Procera Seedlings to Water Stress Response. 32(2), 305 -314 (In Persian). DIO: 20.1001.1.23832592.1398.32.2.14.9
28. Jiang, S., Pan, J., Shi, G., Dorji, T., Hopping, K. A., Klein, J. A., Liu, Y., & Feng, H. (2018). "Identification of root-colonizing AM fungal communities and their responses to short-term climate change and grazing on Tibetan plateau." Symbiosis, 74, 159-166. DOI:10.1007/s13199-017-0497-0
29. Leifheit, E., Verbruggen, E., & Rillig, M.C. (2015). "Arbuscular mycorrhizal fungi reduce decomposition of woody plant litter while increasing soil aggregation." Soil Biology and Biochemistry, 81, 323-328. [DOI:10.1016/j.soilbio.2014.12.003]
30. Liang, Y.M., Su, Y., He, X., Chen, X., & Hu, Y. (2017). "Various effects on the abundance and composition of arbuscular mycorrhizal fungal communities in soils in karst shrub ecosystems." Huan Jing Ke Xue= Huanjing Kexue, 38(11), 4828-4835. DOI: 10.13227/j.hjkx.201704153
31. Liu, M., Zheng, R., Bai, S., Bai, Y., & Wang, J. (2017). "Slope aspect influences arbuscular mycorrhizal fungus communities in arid ecosystems of the Daqingshan Mountains, Inner Mongolia, North China." Mycorrhiza, 27: 189-200. DOI: 10.1007/s00572-016-0739-7
32. Manimegalai, V., Selvaraj, T. & Ambikapathy, V. (2011). "Studies on isolation and identification of VAM fungi in Solanum viarum Dunal of medicinal plants." Adv Appl Sci Res, 2(4), 621-628.
33. Mirzaei, J., Dostcami, S., & Moradi, M. (2017). "Identification of arbuscular mycorrhizal fungi associated with plant species in the Manesht and Ghalarang protected area." Forest and Wood Products, 70(4), 549-557. DOI:10.22059/JFWP.2018.126715.639 (In Persian).
34. Munkvold, L., Kjoller, R.M., Rosendahl, S., & Jakobsen, I.(2004). "High functional diversity within species of arbuscular mycorrhizal fungi." New Phytologist, 164(2), 357-364. DOI:10.1111/j.1469-8137.2004.01169.x
35. Öpik, M., Zobel, M., Cantero, J.J., Davison, J., Facelli, J.M., Hiiesalu, I., Jairus, T., Kalwij, J.M., Koorem, K., Leal, M.E. (2013). "Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi." Mycorrhiza, 23, 411-430. DOI: 10.1007/s00572-013-0482-2
36. Parihar, M., Rakshit, A., Meena, V.S., Gupta, V.K., Rana, K., Choudhary, M., Tiwari, G., Mishra, P.K., Pattanayak, A., Bisht, J.K., Jatav, S.S., Khati, P., & Jatav, H. (2020). " The potential of arbuscular mycorrhizal fungi in C cycling: a review." Archives of Microbiology, 202, 1581-1596. DOI: 10.1007/s00203-020-01915-x
37. Pellicone, G., Caloieroand, I., Caloiero. (2019). "The De Martonne aridity index in Calabria (Southern Italy)." Journal of Maps, 15(2), 788-796. [DOI:10.1080/17445647.2019.1673840]
38. Rasmussen, P. U., Hugerth, L.W., Blanchet, F.G., Andersson, A.F., Lindahl, B.D., Tack, A. J. (2018). "Multiscale patterns and drivers of arbuscular mycorrhizal fungal communities in the roots and root‐associated soil of a wild perennial herb." New Phytologist, 220(4), 1248-1261. DOI: 10.1111/nph.15088
39. Schenck, N. C., & Perez, Y. (1990). Manual for the identification of VA mycorrhizal fungi, Synergistic publications Gainesville.
40. Schlatter, D. C., Kahl, K., Carlson, B., Huggins, D.R., & Paulitz, T. (2018). "Fungal community composition and diversity vary with soil depth and landscape position in a no-till wheat-based cropping system." FEMS microbiology ecology, 94(7), fiy098. [DOI:10.1093/femsec/fiy098]
41. Smith, S. E., & Read, D. J. (2010). Mycorrhizal symbiosis, Academic press. 3rd ed.; 800 pp.
42. Veresoglou, S. D., Shaw, L.J., Hooker, J.E. & Sen, R. (2012). "Arbuscular mycorrhizal modulation of diazotrophic and denitrifying microbial communities in the (mycor) rhizosphere of Plantago lanceolata." Soil Biology and Biochemistry, 53, 78-81. [DOI:10.1016/j.soilbio.2012.05.007]
43. Wang, Q., Pan, J., Ke, Y., Yu, S., Murray, P. J., Luo, T., Zhang, L., Liu, W. 2022. Impact of Aspect on Arbuscular Mycorrhizal Fungal Diversity and Community Composition in a Natural Toona ciliata var. pubescens Forest in Subtropical China. Forests, 13(12), 2100. [DOI:10.3390/f13122100]
44. Xiao, Y., Yang, L., Nie, X., Li, C., Xiong, F., Wang, L. & Zhou, G. (2019). "Effects of slope position on phylogenetic diversity and structure of alpine shrub community." Chinese Journal of Ecology, 38(6), 1611. DOI:10.13292/j. 1000-4890.201906.023/
45. Xu, X., Wang, X., Cleary, M., Wang, P., Lu, N., Sun, Y., & Rönnberg, J. (2020). "Slope position rather than thinning intensity affects arbuscular mycorrhizal fungi (AMF) community in Chinese fir plantations." Forests, 11(3), 273. DOI://doi.org/10.3390/f11030273
46. Xu, X., Qiu, Y., Zhang, K., Yang, F., Chen, M., Lue, X., Yan, X., Wang, P., Zhang, Y., Chen, H., Guo, H., Jiang, L., Hu, S. 2022. Climate warming promotes deterministic assembly of arbuscular mycorrhizal fungal communities. Glob Chang Biol, 28(3), 1147-1161. Doi: 10.1111/gcb.15945.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به بوم‏شناسی جنگل‏های ایران می‌باشد.

طراحی و برنامه نویسی: یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Ecology of Iranian Forest

Designed & Developed by: Yektaweb