1. Balsi, M., S. Esposito, P. Fallavollita and C. Nardinocchi. 2018. Single-tree detection in high-density LiDAR data from UAV-based survey. European Journal of Remote Sensing, 51(1): 679-692. [
DOI:10.1080/22797254.2018.1474722]
2. Chen, S., D. Liang, B. Ying, W. Zhu, G. Zhou andY. Wang. 2021. Assessment of an improved individual tree detection method based on local-maximum algorithm from unmanned aerial vehicle RGB imagery in overlapping canopy mountain forests. International Journal of Remote Sensing, 42(1): 106-125. [
DOI:10.1080/01431161.2020.1809024]
3. Chen, W., X. Hu, Y. Hong and M. Yang. 2018. Airborne LiDAR remote sensing for individual tree forest inventory using trunk detection-aided mean shift clustering techniques. Remote Sensing, 10(7): 1078. [
DOI:10.3390/rs10071078]
4. Dandois, J., M. Olano and E. Ellis. 2015. Optimal altitude, overlap, and weather conditions for computer vision UAV estimates of forest structure. Remote Sensing, 7(10): 13895-13920. [
DOI:10.3390/rs71013895]
5. Donmez, C., O. Villi, S. Berberoglu and A. Cilek. 2021. Computer vision-based citrus tree detection in a cultivated environment using UAV imagery. Computers and Electronics in Agriculture, 187: 106273. [
DOI:10.1016/j.compag.2021.106273]
6. Fareed, N. and K. Rehman. 2020. Integration of remote sensing and GIS to extract plantation rows from a drone-based image point cloud digital surface model. ISPRS International Journal of Geo-Information, 9(3): 151. [
DOI:10.3390/ijgi9030151]
7. Frank, B., F. Mauro and H. Temesgen. 2020. Model-based estimation of forest inventory attributes using lidar: A comparison of the area-based and semi-individual tree crown approaches. Remote Sensing, 12(16): 2525. [
DOI:10.3390/rs12162525]
8. González-Ferreiro, E., U. Diéguez-Aranda, L. Barreiro-Fernández, S. Buján, M. Barbosa, J.C. Suárez and D. Miranda. 2013. A mixed pixel-and region-based approach for using airborne laser scanning data for individual tree crown delineation in Pinus radiata D. Don plantations. International journal of remote sensing, 34(21): 7671-7690. [
DOI:10.1080/01431161.2013.823523]
9. Hao, Y., F.R.A. Widagdo, X. Liu, Y. Quan, L. Dong and F. Li. 2020. Individual tree diameter estimation in small-scale forest inventory using UAV laser scanning. Remote Sensing, 13(1): 24. [
DOI:10.3390/rs13010024]
10. Hoseinpour, A., J. Oladi, H. abkari and M.R. serajian. 2019. Recognizing Plant Tension in Plantations by use of UAVs Visible Light Detector. (Case Study: Nekazalemrood Forestry Plan). Ecology of Iranian Forest, 7(13): 20-28. [
DOI:10.29252/ifej.7.13.20]
11. Karjalainen, T., L. Korhonen, P. Packalen and M. Maltamo. 2019. The transferability of airborne laser scanning based tree-level models between different inventory areas. Canadian Journal of Forest Research, 49(3): 228-236. [
DOI:10.1139/cjfr-2018-0128]
12. Kargar, M., Y. Babaei and A.E. Bonyad. 2021. Evaluate the accuracy of Unmanned aerial vehicles (UAV) data on the survey of dieback Buxus hyrcana (Case study: Sisangan forest Park-Mazandaran). Journal of RS and GIS for Natural Resources, 12(2): 21-24 (In Persian).
13. Koh, L.P. and S.A. Wich. 2012. Dawn of drone ecology: low-cost autonomous aerial vehicles for conservation. Tropical Conservation Science, 5(2): 121-132. [
DOI:10.1177/194008291200500202]
14. La, H.P., Y.D. Eo, A. Chang and C. Kim. 2015. Extraction of individual tree crown using hyperspectral image and LiDAR data. KSCE Journal of Civil Engineering, 19(4): 1078-1087. [
DOI:10.1007/s12205-013-1178-z]
15. Lim, Y.S., P.H. La, J.S. Park, M.H. Lee, M.W. Pyeon and J.I. Kim. 2015. Calculation of tree height and canopy crown from drone images using segmentation. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 33(6): 605-613. [
DOI:10.7848/ksgpc.2015.33.6.605]
16. Lisein, J., M. Pierrot-Deseilligny, S. Bonnet and P. Lejeune. 2013. A photogrammetric workflow for the creation of a forest canopy height model from small unmanned aerial system imagery. Forests, 4(4): 922-944. [
DOI:10.3390/f4040922]
17. Moe, K.T., T. Owari, N, Furuya and T. Hiroshima. 2020. Comparing individual tree height information derived from field surveys, LiDAR and UAV-DAP for high-value timber species in Northern Japan. Forests, 11(2): 223. [
DOI:10.3390/f11020223]
18. Mohan, M., C. Silva, C. Klauberg, P. Jat, G. Catts, A. Cardil and M. Dia. 2017. Individual tree detection from unmanned aerial vehicle (UAV) derived canopy height model in an open canopy mixed conifer forest. Forests, 8(9): 340. [
DOI:10.3390/f8090340]
19. Naveed, F., B. Hu, J. Wang and G.B. Hall. 2019. Individual tree crown delineation using multispectral LiDAR data. Sensors, 19(24): 5421. [
DOI:10.3390/s19245421]
20. Nevalainen, O., E. Honkavaara, S. Tuominen, N. Viljanen, T. Hakala, X. Yu and A. Tommaselli. 2017. Individual tree detection and classification with UAV-based photogrammetric point clouds and hyperspectral imaging. Remote Sensing, 9(3): 185. [
DOI:10.3390/rs9030185]
21. Panagiotidis, D., A. Abdollahnejad, P. Surový and V. Chiteculo. 2017. Determining tree height and crown diameter from high-resolution UAV imagery. International Journal of Remote Sensing, 38(8-10): 2392-2410. [
DOI:10.1080/01431161.2016.1264028]
22. Pourahmad, M., J. Oladi and A. Fallah. 2018. Detection of Tree Species in Mixed Broad-Leaved Stands of Caspian Forests Using UAV Images (Case study: Darabkola Forest). Ecology of Iranian Forest, 6(11): 61-75. [
DOI:10.29252/ifej.6.11.61]
23. Puttock, A.K., A.M. Cunliffe, K. Anderson and R.E. Brazier. 2015. Aerial photography collected with a multirotor drone reveals impact of Eurasian beaver reintroduction on ecosystem structure. Journal of Unmanned Vehicle Systems, 3(3): 123-130. [
DOI:10.1139/juvs-2015-0005]
24. Silva, C.A., A.T. Hudak, L.A. Vierling, E.L. Loudermilk, J.J. O'Brien, J.K. Hiers and A. Khosravipour. 2016. Imputation of individual Longleaf Pine (Pinus palustris Mill.) Tree attributes from field and LiDAR data. Canadian journal of Remote Sensing, 42(5): 554-573. [
DOI:10.1080/07038992.2016.1196582]
25. Stateras, D. and D. Kalivas. 2020. Assessment of olive tree canopy characteristics and yield forecast model using high resolution UAV imagery. Agriculture, 10(9): 385. [
DOI:10.3390/agriculture10090385]
26. Silva, C., C. Klauberg, A. Hudak, L. Vierling, W. Jaafar, M. Mohan and S. Saatchi. 2017. Predicting stem total and assortment volumes in an industrial Pinus taeda L. forest plantation using airborne laser scanning data and random forest. Forests, 8(7): 254. [
DOI:10.3390/f8070254]
27. Sumnall, M. J., R.A. Hill and S.A. Hinsley. 2016. Comparison of small-footprint discrete return and full waveform airborne LiDAR data for estimating multiple forest variables. Remote Sensing of Environment, 173: 214-223. [
DOI:10.1016/j.rse.2015.07.027]
28. Surový, P., N. Almeida Ribeiro and D. Panagiotidis. 2018. Estimation of positions and heights from UAV-sensed imagery in tree plantations in agrosilvopastoral systems. International journal of remote sensing, 39(14): 4786-4800. [
DOI:10.1080/01431161.2018.1434329]
29. Tomaštík, J., M. Mokroš, S. Saloň, F. Chudý and D. Tunák. 2017. Accuracy of photogrammetric UAV-based point clouds under conditions of partially-open forest canopy. Forests, 8(5): 151. [
DOI:10.3390/f8050151]
30. Wallace, L., A. Lucieer and C.S. Watson. 2014. Evaluating tree detection and segmentation routines on very high-resolution UAV LiDAR data. IEEE Transactions on Geoscience and Remote Sensing, 52(12): 7619-7628. [
DOI:10.1109/TGRS.2014.2315649]
31. Westoby, M.J., J. Brasington, N.F. Glasser, M.J. Hambrey and J.M. Reynolds. 2012. 'Structure-from-Motion'photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179: 300-314. [
DOI:10.1016/j.geomorph.2012.08.021]
32. Zarco-Tejada, P.J., R. Diaz-Varela, V. Angileri and P. Loudjani. 2014. Tree height quantification using very high-resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. European journal of agronomy, 55: 89-99. [
DOI:10.1016/j.eja.2014.01.004]
33. Zhang, J., J. Hu, J. Lian, Z. Fan, X. Ouyang and W. Ye. 2016. Seeing the forest from drones: Testing the potential of lightweight drones as a tool for long-term forest monitoring. Biological Conservation, 198: 60-69. [
DOI:10.1016/j.biocon.2016.03.027]
34. Zhou, J., C. Proisy, X. Descombes, G. Le Maire, Y. Nouvellon, J.L. Stape and P. Couteron. 2013. Mapping local density of young Eucalyptus plantations by individual tree detection in high spatial resolution satellite images. Forest Ecology and Management, 301: 129-141. [
DOI:10.1016/j.foreco.2012.10.007]