دوره 9، شماره 17 - ( بهار و تابستان 1400 )                   جلد 9 شماره 17 صفحات 195-185 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

eslami R, azarnoosh M, kialashaki A, kazemnejad F. (2021). Assessing the Probability of Forest Fire Occurring using Dong Model, Artificial Neural Network and K Nearest Neighbors in Babolrood Basin, Mazandaran. Ecol Iran For. 9(17), 185-195. doi:10.52547/ifej.9.17.185
URL: http://ifej.sanru.ac.ir/article-1-418-fa.html
اسلامی راحله، آذرنوش محمدرضا، کیالاشکی علی، کاظم نژاد فرید. ارزیابی احتمال وقوع آتش‌سوزی جنگل با استفاده از مدل دانگ، شبکه عصبی مصنوعی و نزدیک‌ترین همسایه‌ها در حوزه بابلرود، مازندران بوم شناسی جنگل های ایران (علمی- پژوهشی) 1400; 9 (17) :195-185 10.52547/ifej.9.17.185

URL: http://ifej.sanru.ac.ir/article-1-418-fa.html


1- گروه مهندسی منابع طبیعی، واحد چالوس، دانشگاه آزاد اسلامی، چالوس، ایران
چکیده:   (3394 مشاهده)
آتش‌سوزی جنگل به ­عنوان یک تهدید مهم برای امنیت زندگی بشری، زیرساخت‌ها و محیط­ زیست شناخته می‌شود. یکی از مهم‌ترین مراحل در جهت کاهش خطرات آتش‌سوزی جنگل، تعیین مناطق با احتمال وقوع آتش‌سوزی در جنگل است. انتخاب روش‌های مناسب برای مدل‌سازی احتمال وقوع آتش‌سوزی جنگل بسیار مهم می‌باشد. با توجه به اهمیت موضوع در این مطالعه ابتدا با استفاده از مطالعات کتابخانه‌ای و نظرات کارشناسان مهم‌ترین متغیرهای مؤثر بر وقوع آتش‌سوزی در حوزه بابلرود در استان مازندران به ­عنوان منطقه مورد مطالعه تعیین شدند و سپس نتایج سه مدل دانگ، شبکه عصبی مصنوعی (ANN) و K نزدیک‌ترین همسایه‌ها (KNN) در تعیین نقشه احتمال وقوع آتش‌سوزی جنگل با هم مقایسه شد. نتایج نشان داد که مهم‌ترین متغیرهای مؤثر بر وقوع آتش‌سوزی متغیرهای دما، بارندگی و فاصله از مناطق مسکونی هستند. همچنین نتایج شبکه عصبی مصنوعی نسبت به دو مدل دیگر قابل اطمینان­تر است. براساس نتایج حاصله حدود 35 درصد از سطح منطقه مورد مطالعه دارای پتانسیل وقوع آتش‌سوزی طبقه خیلی­ زیاد و زیاد است.
واژه‌های کلیدی: حریق، مازندران، ناپارامتری، ANN، KNN
متن کامل [PDF 1011 kb]   (1045 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1399/10/13 | پذیرش: 1399/12/11

فهرست منابع
1. Abedi Gheshlaghi, H. and K. Valizadeh Kamran. 2017. Evaluation and zoning of forest fire risk using multi-criteria decision-making techniques and GIS. Iranian Journal of Natural Environmental Hazards, 7(15): 49-66 (In Persian).
2. Aleemahmoodi Sarab, S., J. Feghhi, A. Jabarian and B. Amiri. 2013. Predicting the occurrence of natural fires in forests and ranges using artificial neural networks (Case study: Zagros region, Izeh county). Iranian journal of Applied Ecology, 1(2): 75-86 (In Persian).
3. Arndt, N., H. Vacik, V. Koch and A. Arpaci. 2013. Modeling human-caused forest fire ignition for assessing forest fire danger in Austria. Journal of Biogeosciences and Forestry, 6: 315-325. [DOI:10.3832/ifor0936-006]
4. Arpaci, A., B. Malowerschnig, O. Sass and H. Vacik. 2014. Using multi variate data mining techniques for estimating fire susceptibility of Tyrolean forests. Applied Geography, 53: 258-270. [DOI:10.1016/j.apgeog.2014.05.015]
5. Baheri, H., M. Ghodskhah Daryaei and H. Pourbabaei. 2017. Long-term effect of fire on woody species composition and their natural regeneration in Hyrcanian forests, (Case study: Lesakouti forest of Tonekabon, Mazandaran pProvince). Iranian forests ecology journal, 5(9): 37-46. [DOI:10.29252/ifej.5.9.37]
6. Bazgir, M., Z. Riahi, F. Valizadeh and M. Rostaminyd. 2020. Fire Impacts on soil physical and chemical properties of oak forest in Badreh region- Ilam province. Iranian forests ecology journal, 8(15): 81-92 (In Persian).
7. Camp, A., C. Oliver, P. Hessburg and R. Everett. 1997. Predicting late-successional fire refugia pre-dating European settlement in the Wenatchee Mountains, For Ecol Manag, 95(1): 63-77. [DOI:10.1016/S0378-1127(97)00006-6]
8. Dong, X.U., D. Li-min, S.H. Guo-fan, T. Lei and W. Hui. 2005. Forest fire risk zone mapping from satellite images and GIS for Baihe Forestry Bureau, Jilin, China. Journal of Forestry Research, 16(3): 169-174. [DOI:10.1007/BF02856809]
9. Ercanoglu, M., K.T. Weber, J. Langille and R. Neves. 2006. Modeling wildland fire susceptibility using fuzzy systems. GISci. Remote. Sens, 43(3): 268-282. [DOI:10.2747/1548-1603.43.3.268]
10. Eshaghi, M., S. Shataee joybari. 2016. Preparation map of forest fire risk using SVM, RF & MLP algorithms (Case study: Golestan national park, northeastern Iran). Journal of Wood and Forest Science and Technology, 23(4): 1333-154.
11. Eskandari, S. 2015. Evaluation of forest fire risk potential using Dong model, case study: District Three of Neka-Zalemroud forests. Geographical Planning of Space, 5(15): 195-210 (In Persian).
12. Eskandari, S. and E. Chuvieco. 2015. Fire danger assessment in Iran based on geospatial information. Int. J. Appl. Earth Obs. Geoinf, 42: 57-64. [DOI:10.1016/j.jag.2015.05.006]
13. Eugenio, F.C., A.R. Dos Santos, N.C. Fiedler, G.A. Ribeiro, A.G. da Silva, A.B. Dos Santos, G.G. Paneto and V.R. Schettino. 2016. Applying GIS to develop a model for forest fire risk: a case study in Espírito Santo, Brazil. Journal of environmental management, 173: 65-71. [DOI:10.1016/j.jenvman.2016.02.021]
14. Fang, X. 2009. Are you becoming a diabetic? A data mining approach. Sixth International Conference on Fuzzy Systems and Knowledge Discovery; 2009 Aug 14-16; Tianjin, China: IEEE, 18-22. [DOI:10.1109/FSKD.2009.807]
15. Fatemi, S.B. and Y. Rezaei. 2006. Fundamentals of remote sensing, First edition, Azad university press, 257 pp (In Persian).
16. Hong, H., S. Naghibi, M. Dashtpagerdi, H. Pourghasemi and W. Chen. 2017. A comparative assessment between linear and quadratic discriminant analyses (LDA-QDA) with frequency ratio and weights-of-evidence models for forest fire susceptibility mapping in China. Arab. J. Geosci, 10: 167. [DOI:10.1007/s12517-017-2905-4]
17. Hong, H., P. Tsangaratos, I. Ilia, J. Liu, A.X. Zhu and C. Xu. 2018. Applying genetic algorithms to set the optimal combination of forest fire related variables and model forest fire susceptibility based on data mining models. The case of Dayu County, China. Science of the Total Environment, 630: 1044-1056. [DOI:10.1016/j.scitotenv.2018.02.278]
18. Jenkins, M.J., E. Hebertson, W. Page and C.A. Jorgensen. 2008. Bark beetles, fuels, fires and implications for forest management in the Intermountain West. Forest Ecology and Management, 254: 16-34. [DOI:10.1016/j.foreco.2007.09.045]
19. Kotsiantis, S.B. 2007. Supervised machine learning: A review of classification techniques. Informatica, 31: 249-268.
20. Lal Dahti, J., M. Mohammadi and A. Padidaran Moghadam. 2018. A method for the diagnosis of metabolic syndrome based on KNN data mining algorithm: A case study in Shohada-ye Kargar hospital in Yazd, Iran. Journal of Health and Biomedical Informatics, 4(4): 291-304 (In Persian).
21. Massada, A., A.D. Syphard and S. Stewart. 2011. Wildfire ignition-distribution modelling: a comparative study in the Huron e Manistee National Forest. International Journal of Wildland Fire, 22(2): 174-183. [DOI:10.1071/WF11178]
22. Moore, I.D., P. Gessler, G. Nielsen and G. Peterson. 1993. Soil attribute prediction using terrain analysis. Soil Science Society of America Journal, 57: 443-452. [DOI:10.2136/sssaj1993.03615995005700020026x]
23. Neocleous, C. and C. Schizas. 2002. Artificial Neural Network Learning: A Comparative Review, LNAI, 2308: 300-313. [DOI:10.1007/3-540-46014-4_27]
24. Ngoc-Thach, N., D.B.T. Ngo, P. Xuan-Canh, N. Hong-Thi, B.H. Thi, H. NhatDuc and T.B. Dieu. 2018. Spatial pattern assessment of tropical forest fire danger at Thuan Chau area (Vietnam) using GIS-based advanced machine learning algorithms: A comparative study. Ecological Informatics. Article in press. [DOI:10.1016/j.ecoinf.2018.05.009]
25. Oliveira, S., F. Oehler, J. San-Miguel-Ayanz, A. Camia and J.M.C. Pereira. 2012. Modeling spatial patterns of fire occurrence in Mediterranean Europe using multiple regression and random forest. For. Ecol. Manag, 275: 117-129. [DOI:10.1016/j.foreco.2012.03.003]
26. Pourtaghi, Z.S., H.R. Pourghasemi, R. Aretano and T. Semeraro. 2016. Investigation of general indicators influencing on forest fire and its susceptibility modelling using different data mining techniques. Ecol. Indic, 64: 72-84. [DOI:10.1016/j.ecolind.2015.12.030]
27. Randerson, J.T., H. Liu, M.G. Flanner, S.D. Chambers, Y. Jin and P.G. Hess. 2006. The impact of boreal forest fire on climate warming. Science, 314(5802): 1130-1132. [DOI:10.1126/science.1132075]
28. Sachdeva, S., T. Bhatia and A.K. Verma. 2018. GIS-based evolutionary optimized Gradient Boosted Decision Trees for forest fire susceptibility mapping. Natural Hazards, 92(3): 1399-1418. [DOI:10.1007/s11069-018-3256-5]
29. Sahana, M. and T.A. Ganaie. 2017. GIS-based landscape vulnerability assessment to forest fire susceptibility of Rudraprayag district, Uttarakhand, India. Environmental earth sciences, 76(20): 676. [DOI:10.1007/s12665-017-7008-8]
30. Satir, O., S. Berberoglu and C. Donmez. 2015. Mapping regional forest fire probability using artificial neural network model in a Mediterranean forest ecosystem. Geomatics, Natural Hazards and Risk, 1-14. [DOI:10.1080/19475705.2015.1084541]
31. Soleimanpour, S.M., S.H. Mesbah and B. Hadaiati. 2018. Application of CART decision tree data mining technique in determining the most effective drinking water quality factors (Case study: Kazerun plain, Fars province). Journal of Health and Environment, 11(1): 1-14 (In Persian).
32. Stocks, B.J., M.A. Fosberg, M.B. Wotton, T.J. Lynham and K.C. Ryan. 2000. Climate change and forest fire activity in North American boreal forests. In Fire, climate change, and carbon cycling in the boreal forest. Springer, New York, 368-376. [DOI:10.1007/978-0-387-21629-4_20]
33. Thach, N.N., D.B.T. Ngo, P. Xuan-Canh, N. Hong-Thi, B.H. Thi, H. Nhat-Duc and T.B. Dieu. 2018. Spatial pattern assessment of tropical forest fire danger at Thuan Chau area (Vietnam) using GIS-based advanced machine learning algorithms: A comparative study. Ecological Informatics, 46: 74-85. [DOI:10.1016/j.ecoinf.2018.05.009]
34. Tien Bui, D., Q.T. Bui, Q.P. Nguyen, B. Pradhand, H. Nampak and P. Trong Trinh. 2017. A hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical area. Agric. For. Meteorol, 233: 32-44. [DOI:10.1016/j.agrformet.2016.11.002]
35. Wastl, C., C. Schunk, M. Leuchner, G.B. Pezzatti and A. Menzel. 2012. Recent climate change: long-term trends in meteorological forest fire danger in the Alps. Agricultural and Forest Meteorology, 162: 1-13. [DOI:10.1016/j.agrformet.2012.04.001]
36. Zhou, Z.H. 2012. In Ensemble methods: foundations and algorithms. New York, N.Y. Chapman and Hall/CRC Press, 236 pp. [DOI:10.1201/b12207]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به بوم‏شناسی جنگل‏های ایران می‌باشد.

طراحی و برنامه نویسی: یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Ecology of Iranian Forest

Designed & Developed by: Yektaweb