دوره 10، شماره 19 - ( بهار و تابستان 1401 )                   جلد 10 شماره 19 صفحات 31-22 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tongo A, Jalilvand H, Hosseininasr M, Naji H R. Gas Exchanges and Accumulation of Osmolites in Declined Persian Oak Stands in Ilam Province (Case study: Gchan and Sheshdar Forest Area). ifej 2022; 10 (19) :22-31
URL: http://ifej.sanru.ac.ir/article-1-403-fa.html
تنگو افسانه، جلیلوند حمید، حسینی نصر محمد، ناجی حمیدرضا. تبادلات گازی و تجمع محلولهای سازگار در تودههای دچار زوال بلوط ایرانی در استان ایلام (مطالعه موردی: منطقه جنگلی گچان و ششدار). بوم شناسی جنگل های ایران (علمی- پژوهشی) 1401; 10 (19) :31-22

URL: http://ifej.sanru.ac.ir/article-1-403-fa.html


گروه علوم و مهندسی جنگل، دانشگاه علوم کشاورزی و منابع طبیعی ساری
چکیده:   (636 مشاهده)
مقدمه و هدف: مطالعه تبادلات گازی در شرایط تنش خشکی می­تواند به شناسایی فاکتورهای مؤثر در مقاومت به این تنش کمک کند. به­ منظور بررسی تأثیر عوامل فیزیولوژیکی ویژگی­های فتوسنتزی و تجمع اسمولیت­ها بر خشکیدگی درختان بلوط ایرانی(Quercus brantii Lindl.) ، دو توده جنگلی گچان و ششدار استان ایلام برای مطالعه انتخاب شدند.
مواد و روش­ها: درختان بلوط بر مبنای شدت خشکیدگی تاجی به چهار گروه  (سالم، ۳۳-۵% ،۶۶-۳۳% و بالای ۶۶% خشکیدگی) تقسیم شدندفعالیت­های فیزیولوژیکی مانند: فتوسنتز، تعرّق، تنفس، غلظت­ دی­اکسید­کربن داخل روزنه­ ای، هدایت مزوفیلی­، کارایی مصرف آب، دمای برگ، قندهای محلول و اسیدآمینه­ های آزاد از برگ درختان در جهت شیب غالب منطقه از شاخه­ های انتهایی در قسمت میانی تاج به­ صورت تصادفی اندازه­گیری شدند و پایه ­های منتخب در محدوده­ ی قطری ٣٠ تا ٤٠ سانتی­متر انتخاب شد. برای تجزیه و تحلیل داده ­ها، از تجزیه واریانس یک طرفه و برای مقایسه تیمارهای مختلف از کمینه­ ی تفاوت معنی­داری (LSD) استفاده شد و تمام محاسبات با نرم افزار SAS  انجام شد.
یافته ­ها: در درختان با خشکیدگی شدید در منطقه گچان، نتایج این تحقیق نشان داد که میزان فتوسنتز (1/06 میکرومول CO2 بر مترمربع بر ثانیه)  با کاهش در هدایت مزوفیلی ( 0/0021 مول در مترمربع بر ثانیه)، تعرّق (3/82 میلی­مول آب بر مترمربع بر ثانیه)، کارایی مصرف آب (0/27 میکرومول  CO2بر مول آب) و افزایش غلظت دی­اکسید­کربن زیرروزنه ­ای (488/15 میکرومول CO2 بر مول) و دما (36/05 درجه سانتی­گراد) همراه بود. نتایج آزمون همبستگی (در سطح احتمال 0/05 و 0/01)،  نقش عوامل روزنه ­ای و غیر‌روزنه­ ای در کاهش فتوسنتز را نشان داد. همچنین، افزایش میزان قند­های محلول (0/009 میکروگرم بر گرم وزن تر برگ) و اسید آمینه­ های آزاد (0/012 میکروگرم بر گرم وزن تر برگ) به‌­عنوان محلول­های سازگار در تنظم اسمزی مشاهده نشد. در منطقه ششدار پارامترهای فتوسنتزی بین تیمارهای ­مختلف خشکیدگی تفاوت معنی­داری را نشان نداد، امّا با افزایش تجمع قند­های محلول در درختان سرخشکیده بلوط ایرانی همراه شد. افزون‌بر‌این، همبستگی معنی­ داری بین فتوسنتز با عوامل روزنه­ای مشاهده نشد که بیانگرتوانایی این گونه در باز نگه­داشتن روزنه در شرایط تنش خشکی شدید است.
نتیجه­ گیری: بنابراین، نتایج تحقیق حاضر تفاوت در ظرفیت­های فتوسنتز درختان سرخشکیده بلوط ایرانی و همچنین به­ کارگیری راه­کارهای اجتناب و تحمل به خشکی در دو منطقه را نشان می­دهد.
متن کامل [PDF 1950 kb]   (190 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اکولوژی جنگل
دریافت: 1399/7/27 | پذیرش: 1399/12/23 | انتشار: 1401/3/23

فهرست منابع
1. Abrams, M.D. 1990. Adaptations and responses to drought in Quercus species of North America. Tree Physiology, 7(4): 227-238. [DOI:10.1093/treephys/7.1-2-3-4.227]
2. Ali, Q. and M. Ashraf. 2011. Induction of drought tolerance in maize (Zea mays L.) due to exogenous application of trehalose: growth, photosynthesis, water relations and oxidative defence mechanism. Journal of Agronomy & Crop Science, 197(4): 258-271. [DOI:10.1111/j.1439-037X.2010.00463.x]
3. Afaridan, M., S. Kalbi, A. Fallah, J. Oladi and H. Jalilvand. 2014. Identify the factors affecting the degradation and drying Quercus forests of the Zagros. 1st National Conference of Oak Forests (NCOF2014), Yasuj, Iran, 1-4 pp (In Persian).
4. Amir Ahmadi, B., R. Zolfaghari and M. Reza Mirzaei. 2015. Relation between Dieback of Quercus brantii Lindl. Trees with Ecological and Sylvicultural Factors, (Study Area: Dena Protected Area). Ecology of Iranian Forests, 3(6): 19-27.
5. Barbour, M.M., C.R. Warren, G.D. Farquhar, G. Forrester and H. Brown. 2010. Variability in mesophyll conductance between barley genotypes, and effects on transpiration efficiency and carbon isotope discrimination. Plant, Cell Environ, 33: 1176-85. [DOI:10.1111/j.1365-3040.2010.02138.x]
6. Bojovic, M., N. Nicolic, M. Borisev, S. Pajevic, M. Zupunski, R. Horak, A. Pilipovic, S. Orlovic and S. Stojnic. 2017. The durnal time course of leag gas exchange parameters of pedunculate Oak seedlings subjected to experimental drought conditions. Baltic Forestry, 23(3): 584-594.
7. Baraket, M., S. Fkiri, T. Ibtissam, S. Sai Kachout, A. Ennajah, A. Khaldi and Z. Nasr. 2020. Effect of Water Deficit on Gas Exchange Responses to Intercellular CO2 Concentration Increase of Quercus suber L. Seedlings. Journal of Agricultural Science, 12(1): 73-83. [DOI:10.5539/jas.v12n1p73]
8. Cano, F.J., R. Lopez and C.R. Warren. 2014. Implications of the mesophyll conductance to CO2 for photosynthesis and water-use efficiency during longterm water stress and recovery in two contrasting Eucalyptus species. Plant Cell Environ, 37(11): 2470-90. [DOI:10.1111/pce.12325]
9. Dubois, M., K.A. Gilles, J.K. Hamilton, P.A. Reders and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3): 350-356. [DOI:10.1021/ac60111a017]
10. Demirevska, K., L. Simova-Stoilova, I. Fedina, K. Georgieva and K. Kunert. 2010. Response of oryzacystatin I transformed tobacco plants to drought, heat and light stress. Journal of Agronomy & Crop Science, 196(2): 90-99. [DOI:10.1111/j.1439-037X.2009.00396.x]
11. Deligoz, A. and E. Bayar. 2018. Drought stress responses of seedlings of two oak species (Quercus cerris and Quercus robur). Turkish Journal of Agriculture and Forestry, 42: 1-10. [DOI:10.3906/tar-1709-29]
12. Epron, D. and E. Dreyer. 1990. Stomatal and non-stomatal limitation of photosynthesis by leaf water deficits in three oak species: a comparison of gas exchange and chlorophyll a fluorescence data. Annales des Sciences Forestieres, 47(5): 435-450. [DOI:10.1051/forest:19900503]
13. Epron, D. and E. Dreyer. 1993. Long-term effects of drought on photosynthesis of adult oak trees (Quercus petraea (Matt.) Liebl. and Quercus robur L.) in a natural stand. New Phytologist, 125: 381-389. [DOI:10.1111/j.1469-8137.1993.tb03890.x]
14. Flexas, J., M.M. Barbour, O. Brendel, H.M. Cabrera and et al. 2012. Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. Plant Science, 193-194: 70-84. [DOI:10.1016/j.plantsci.2012.05.009]
15. Frosi, G., M.T. Oliveira, J. Almeida-Cortez and M.G. Santos. 2013. Ecophysiological performance of Calotropis procera: an exotic and evergreen species in Caatinga, Brazilian semi-arid. Acta Physiologiae Plantarum, 35: 335-344. [DOI:10.1007/s11738-012-1076-x]
16. Frosi, G., W. Harand, M.T. Oliveira, S. Pereira, S. Pereira Cabral, A. Montenegro and M.G. Santos. 2017. Different physiological responses under drought stress result in different recovery abilities of two tropical woody evergreen species. Acta Botanica Brasilica, 31(2): 153-160. [DOI:10.1590/0102-33062016abb0375]
17. Fallah, A. and M. Haidari. Investigating the Oak Decline in different Crown-Dimensions in Middle Zagros Forests (Case Study: Ilam). Ecology of Iranian Forests, 6(12): 9-17 (In Persian). [DOI:10.29252/ifej.6.12.9]
18. Gebre, M.G., M.R. Kuhns and J.R. Brandle. 1994. Organic solute accumulation and dehydration tolerance in three water stress Populus deltoides clones. Tree Physiology, 14(6): 575-587. [DOI:10.1093/treephys/14.6.575]
19. Godara, A. and K. Shashi Kala. 2011. Effect of moisture stress on leaf total proteins, proline and free amino acid content in commercial cultivars of Ziziphus Mauritlana. Journal of Scientific Research Banaras Hindu University, Varanasi, 55: 65-69.
20. Hwang, M.N. and G.M. Ederer. 1975. Rapid hippurate hydrolysis method for presumptive identification of group B streptococci. Journal of Clinical Microbiology, 1(1): 114-115. [DOI:10.1128/jcm.1.1.114-115.1975]
21. Hu, Y. and U. Schmidhalter. 1998. Spatial distributions of inorganic ions and carbohydrates contributing to osmotic adjustment in the elongating wheat leaf under saline conditions. Australian Journal of Plant Physiology, 25(5): 591-597. [DOI:10.1071/PP97162]
22. Holland, V., S. Koller, S. Lukas and W. Bruggemann. 2016. Drought-and frost-induced accumulation of soluble carbohydrates during accelerated senescence in Quercus pubescences. Trees, 30: 215-226. [DOI:10.1007/s00468-015-1290-4]
23. Iturbe-Ormaetxe, I., P.R. Escuredo, C. Arrese-Igor and M. Becana. 1998. Oxidative damage in pea plants exposed to water deficit or paraquat. Plant Physiology, 116(1): 173-181. [DOI:10.1104/pp.116.1.173]
24. Jafari, M., J. Hosseinzadeh and M. Pourhashemi. 2015. Detection and zoning of oak Decline by using RS and GIS in Ilam province. Final Report of Research Project, Published by Research Institute of Forest and Rangelands, Tehran, 48 pp (In Persian).
25. Jafarnia, S.H.M., B. Akbarinia, A.M. Hosseinpour and A. Modarres Sanavi. 2017. Salami. Effect of drought stress on some growth, morphological, physiological, and biochemical parameters of two different populations of Quercus brantii. iForest - Biogeosciences and Forestry, 11(2): 212‐20. [DOI:10.3832/ifor2496-010]
26. Kabrick, J.M., D.C. Dey, R.G. Jensen and M. Wallendorf. 2008. The role of environmental factors in oak decline and mortality in the Ozark Highlands. Forest Ecology and Management, 255(5): 1409-1417. [DOI:10.1016/j.foreco.2007.10.054]
27. Klamkowski, K. and W. Treder. 2008 Response to drought stress of three strawberry cultivars grown under greenhouse conditions. Journal of Fruit and Ornamental Plant Research, 16(16): 179-188.
28. Levitt, J. 1980. Responses of Plants to Environmental Stresses. Water, Radiation, Salt and Other Stresses. Academic Press, New York, 365 pp.
29. Lei, Y., Ch. Yin and Ch. Li. 2006. Differences in some morphological, physiological, and biochemical responses to drought stress in two contrasting populations of Populus przewalskii. Physiologia Plantarum, 127: 182-191. [DOI:10.1111/j.1399-3054.2006.00638.x]
30. Lim, H., W.K. Jun, S. Lee, H. Lee and W. Young Lee. 2017. Growth and Physiological Responses of Quercus acutissima Seedling under Drought Stress. Plant Breeding and Biotechnology, 5(4): 363-370. [DOI:10.9787/PBB.2017.5.4.363]
31. Liu, B., J. Liang, G. Tang, X. Wang, F. Liu and D. Zhao. 2019. Drought stress effects on growth, water use efficiency, gas exchange and chlorophyll fluorescence of Juglans rootstocks. Scientia Horticulturae, 250: 230-235. [DOI:10.1016/j.scienta.2019.02.056]
32. McDowell, N., W.T. Pockman, C.D. Allen, D.D. Breshears, N. Cobb, T. Kolb, J. Plaut, J. Sperry, A. West, D.G. Williams and E.A. Yepez. 2008. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytologist, 178(4): 719-739. [DOI:10.1111/j.1469-8137.2008.02436.x]
33. Meszaros, I., S. Veres, E. Szollosi, P. Koncz, P. Kanalas and V. Olah. 2008. Responses of some ecophysiological traits of sessile oak (Quercus petraea) to drought stress and heat wave in growing season. Acta Biologica Szegediensis, 52: 107-109.
34. Mafakheri, A., A. Siosemardeh, B. Bahramnejad, P.C. Struik and E. Sohrab. 2010. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Australian Journal of Crop Science, 4(8): 580-585.
35. Nazarii, M. 2011. Investigation of morphological, physiological and biochemical reactions of Quercus brantii, Quercus infectoria and Quercus libani seedlings to drought stress. Master Thesis, Yasuj University, 213 pp (In Persian).
36. Najihah T.S., M.H. Ibrahim, A. Razak, R. Nulit and P.E.M. Wahab. 2019. Effects of water stress on the growth, physiology and biochemical properties of oil palm seedlings. Agriculture and Food, 4(4): 854-868. [DOI:10.3934/agrfood.2019.4.854]
37. Powers, J.S., P. Sollins, M.E. Harmon and J.A. Jones. 1999. Plant-pest interactions in time and space: a Douglas-fir bark beetle outbreak as a case study. Landscape Ecology, 14: 105-120. [DOI:10.1023/A:1008017711917]
38. Palva, T.E., S. Thtiharju, I. Tamminen, T. Puhakainen, R. Laitinen, J. Svensson, D. Prochazkova, R.K. Sairam, G.C. Srivastava and D.V. 2001. Singh. Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Science, 161(4): 765-771. [DOI:10.1016/S0168-9452(01)00462-9]
39. Pinheiro, C., J.A. Passarinho and C.P. Ricardo. 2004. Effect of drought and rewatering on the metabolism of Lupinus albus organs. Journal of Plant Physiology, 161(11): 1203-10. [DOI:10.1016/j.jplph.2004.01.016]
40. Peng, C.H., Z.H. Ma, X.D. Lei, Q. Zhu, H. Chen, W.F. Wang, S.R. Liu, W.Z. Li, X.Q. Fang, X.L. Zhou. 2011. A drought-induced pervasive increase in tree mortality across Canada's boreal forests. Nature Climate Change, 1(9): 467-471. [DOI:10.1038/nclimate1293]
41. Perez-Lopez, U., A. Robredo, M. Lacuesta, A. Mena-Petite and A. Munoz-Rueda. 2012. Elevated CO2 reduces stomatal and metabolic limitations on photosynthesis caused by salinity in Hordeum vulgare. Photosynthesis Research, 111(3): 269-283. [DOI:10.1007/s11120-012-9721-1]
42. Peguero-Pina, J.J., O.M. Herrer, E.G. Pelegrín and D.S. Knapik. 2018. Cavitation Limits the Recovery of Gas Exchange after Severe Drought Stress in Holm Oak (Quercus ilex L.). Forests, 9(8): 1-13. [DOI:10.3390/f9080443]
43. Patricia, R.T., Ch.B. Zou, A. Adhikari, H.D. Adams and R.E. Will. 2020. Drought Tolerance and Competition in Eastern Redcedar (Juniperus virginiana) Encroachment of the Oak-Dominated Cross Timbers. Frontiers in Plant Science, 11: 1-12. [DOI:10.3389/fpls.2020.00059]
44. Ritchie, S.W., H.T. Nguyen and A.S. Haloday. 1990. Leaf water content and gas exchange parameters of two wheat genotypes differing in drought resistance. Crop Science, 30(1): 105-111. [DOI:10.2135/cropsci1990.0011183X003000010025x]
45. Rivas, R., G. Frosi, D.G. Ramos, S. Pereira, A.M. Benko-Iseppon and M.G. Santos. 2017. Photosynthetic limitation and mechanisms of photoprotection under drought and recovery of Calotropis procera, an evergreen C3 from arid regions. Plant Physiology and Biochemistry, 118: 5895-599. [DOI:10.1016/j.plaphy.2017.07.026]
46. Rivas, R., V. Barros, H. Falcao, G. Frosi, E. Arruda and M. Santos. 2020. Ecophysiological Traits of Invasive C3 Species Calotropis procera to Maintain High Photosynthetic Performance under High VPD and Low Soil Water Balance in Semi-Arid and Seacoast Zones. Frontiers in Plant Science, 11 (717): 1-16. [DOI:10.3389/fpls.2020.00717]
47. Srivastava, L.M. 2002. Abscisic Acid and Stress Tolerance in Plants. San Diego: Academic Press, 381-412. [DOI:10.1016/B978-012660570-9/50158-1]
48. Sysseh Mardeh, A., A. Ahmadi, K. Pustini and H. Ebrahimzadeh. 2004. Stomatal and non-stomatal factors controlling photosynthesis and its relationship with drought resistance in wheat cultivars. Iranian Journal of Agricultural Sciences, 35(1): 93-106 (In Persian).
49. Sivaci, A. 2006. Seasonal changes of total carbohydrate contents in three variaties of apple (Malus..sylvestris Miller.) Stem cuttings. Scientica Horticulture, 109: 234-237. [DOI:10.1016/j.scienta.2006.04.012]
50. Siam, A.M.J., K.M. Radoglou, B. Noitsakis and P. Smiris. 2008. Physiological and growth responses of three Mediterranean oak species to different water availability regimes. Journal of arid environments, 72(5): 583-592. [DOI:10.1016/j.jaridenv.2007.11.001]
51. Sisakht Nejad, M. and R. Zolfaghari. 2014. The Effect of Water Stress on Gas Exchange in Two Iranian Oak Species (Quercus brantii) and V yvl (Quercus libani). Journal of Zagros Forests Researche, 1(2): 1-16.
52. Shuangxi, Z., M. Belinda, S. Santiago, S. Dominik and I. Colin Prentice. 2014. Short-term water stress impacts on stomatal, mesophyll and biochemical limitations to photosynthesis differ consistently among tree species from contrasting climates. Tree Physiology, 34(10): 1035-1046. [DOI:10.1093/treephys/tpu072]
53. Tenhunen, J.D., O.L. Lange and M. Braun. 1982. Midday stomatal closure in Mediterranean type sclerophylis under simulated habitat conditions in an environmental chamber: I. Comparison of the behaviour of various European Mediterranean species. Flora, 172(6): 563-579. [DOI:10.1016/S0367-2530(17)31366-X]
54. Theroux-rancourt, G., G. Ethier and S. Pepin. 2015. Greater efficiency of water use in poplar clones having a delayed response of mesophyll conductance to drought. Tree Physiology, 35(2): 172-84. [DOI:10.1093/treephys/tpv006]
55. Vannoppen, A., K. Treydte, P. Boeckx, V. Kint, Q. Ponette, K. Verheyen and B. Muys. 2020. Tree species diversity improves beech growth and alters its physiological response to drought. [DOI:10.1007/s00468-020-01981-0]
56. Trees, 34: 1059-1073.
57. Yannis, R.Y. and R. Kalliopi. 2002. Physiological Responses of Beech and Sessile Oak in a Natural Mixed Stand during a Dry Summer. Annals of Botany, 89(6): 723-730. [DOI:10.1093/aob/mcf133]
58. Yildiz-Aktas, L., S. Dagnon, A. Gurel, E. Gesheva and A. Edreva. 2009. Drought tolerance in cotton: involvement of nonenzymatic ROS-scavenging compounds. Journal of Agronomy and Crop Science, 195(4): 247-253. [DOI:10.1111/j.1439-037X.2009.00366.x]
59. Zait, Y. and A. Schwartz. 2018. Climate-Related Limitations on Photosynthesis and Drought-Resistance Strategies of Ziziphus spina-christi. Frontiers in Forests and Global, Change 1: 3. [DOI:10.3389/ffgc.2018.00003]
60. Zafirov, N. and G. Kostov. 2019. Main stress factors in Coppice Oak forests in western Bulgaria. Silva Balcanica, 20(1): 37‐52.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به بوم‏شناسی جنگل‏های ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2023 CC BY-NC 4.0 | Ecology of Iranian Forest

Designed & Developed by : Yektaweb