دوره 8، شماره 15 - ( بهار و تابستان 1399 )                   جلد 8 شماره 15 صفحات 80-72 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Haghverdi K, Samadzadeh B, Kooch Y. (2020). The Effect of Different Forest Types on Litter Quality and Soil Enzyme Activity in the Vaz Forest of Noor-Mazandaran Province. ifej. 8(15), 72-80. doi:10.52547/ifej.8.15.72
URL: http://ifej.sanru.ac.ir/article-1-287-fa.html
حق وردی کتایون، صمدزاده بهناز، کوچ یحیی. اثر تیپ های مختلف جنگلی بر کیفیت لاشبرگ و فعالیت آنزیمی خاک در جنگل واز نور- استان مازندران بوم شناسی جنگل های ایران (علمی- پژوهشی) 1399; 8 (15) :80-72 10.52547/ifej.8.15.72

URL: http://ifej.sanru.ac.ir/article-1-287-fa.html


دانشگاه آزاد اسلامی واحد کرج
چکیده:   (2641 مشاهده)
کیفیت لاشبرگ و فعالیت­های آنزیمی خاک شاخص­ هایی به­ منظور ارزیابی کیفیت و سلامت خاک می­ باشند. هدف پژوهش حاضر، بررسی اثر تیپ­ های مختلف در جنگل واز نور- استان مازندران (شامل راش- ممرز، راش- افرا شیردار، راش- بلوط و راش خالص) بر کیفیت لاشبرگ و فعالیت برخی از مهم­ترین آنزیم­ های خاک (اوره آز، اسید فسفاتاز، آریل سولفاتاز و اینورتاز) بود. به ­همین ­منظور، در فصل رویش از هر تیپ هشت نمونه لاشبرگ و خاک از عمق 0 تا 15 سانتی‌متری جمع ­آوری شدند. تجزیه واریانس مشخصه ­های لاشبرگ، مشخصه­ های فیزیکوشیمیایی خاک و نرخ فعالیت آنزیم ­های خاک حاکی از وجود تفاوت آماری معنی­دار در بین تیپ ­های مورد مطالعه می ­باشد. به ­طوری­که، بیش‌ترین مقادیر ضخامت (15/15 سانتی‌متر) و نسبت کربن به نیتروژن لاشبرگ (08/79) به­ طور معنی‌دار (01/0 > p) به خاک تحتانی تیپ راش خالص و مقدار این مشخصه‌ها به‌ترتیب 09/8 سانتی‌متر و15/42 به خاک زیرین تیپ راش- ممرز اختصاص داشت. مطابق با نتایج، بالاترین نرخ فعالیت آنزیم­های اوره­آز (14/23 میکروگرم آمونیوم در گرم خاک در دو ساعت)، اسید فسفاتاز (12/521 میکروگرم پارانیتروفنیل در گرم خاک در یک ساعت)، آریل­سولفاتاز (129 میکروگرم پارانیتروفنیل در گرم خاک در یک ساعت) و اینورتاز (37/210 میکروگرم گلوکز در گرم خاک در یک ساعت) به ­طور معنی ­دار (01/0 > p) در خاک تیپ راش- ممرز مشاهده شد. یافته ­ها حاکی از آنست که خاک تیپ راش- ممرز نسبت به سایر تیپ­ های مورد بررسی از کیفیت بالاتری برخوردار می ­باشد. نتایج این تحقیق می­ تواند در خصوص اولویت‌بندی توده ­های جنگلی بر مبنای کیفیت بقایای گیاهی و خاک به مدیران کمک شایانی نماید.
 
متن کامل [PDF 321 kb]   (845 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اکولوژی جنگل
دریافت: 1397/10/20 | پذیرش: 1398/2/23 | انتشار: 1399/4/2

فهرست منابع
1. Adamczyk, B., P. Kilpeläinen, V. Kitunen and A. Smolander. 2014. Potential activities of enzymes involved in N, C, P and S cycling in boreal forest soil under different tree species. Pedobiologia, 57(2): 97-102. [DOI:10.1016/j.pedobi.2013.12.003]
2. Alef, K. and P. Nannipieri, P. 1995. Methods in applied soil microbiology and biochemistry Academic Press, London.
3. Amini, R., R. Rahmani, H. Habashi. 2011. Dynamics of litter N, P and C of hornbeam trees (Case study: Series 1, Shast-Kolateh Forest). Iranian journal of Forests and Poplar Research, 19 (1): 94-103.
4. Aubert, M., M. Hedde, T. Decaëns, F. Bureau, P. Margerie and D. Alard. 2003. Effects of tree canopy composition on earthworms and other macro-invertebrates in Beech forests of upper normandy (France): The 7th International Symposium on Earthworm Ecology Cardiff Wales 2002. Pedobiologia, 47(5-6): 904-912. [DOI:10.1016/S0031-4056(04)70288-7]
5. Augusto, L., J. Ranger, D. Binkley and A. Rothe. 2002. Impact of several common tree species of European temperate forests on soil fertility. Annals of Forest Science, 59(3): 233-253. [DOI:10.1051/forest:2002020]
6. Berg, B. and C. Mc Claugherty. 2008. Plant litter decomposition, humus formation, carbon sequestration. Second edition, Berlin: Springer Publication.
7. Błońska, E., J. Lasota and P. Gruba. 2016. Effect of temperate forest tree species on soil dehydrogenase and urease activities in relation to other properties of soil derived from loess and glaciofluvial sand. Ecological Research, 31(5): 655-664. [DOI:10.1007/s11284-016-1375-6]
8. Bremmer, J. M. and C. S. Mulvaney. 1982. Nitrogen-total. In: Page, A.L., (Ed.). Methods of Soil Analysis, Part 2: Chemical and Biological Methods. Agronomy Monograph 9, Part 2, 2nd ed. American Society of Agronomy, Madison, WI, 595-624. [DOI:10.2134/agronmonogr9.2.2ed.c31]
9. Burns, R.G., J.L. De Forest, J. Marxsen, R.L. Sinsabaugh, M.E. Stromberger, M.D. Wallenstein, M. N. Weintraub and A. Zoppini. 2013. Soil enzymes in a changing environment: current knowledge and future directions. Soil Biology and Biochemistry, 58(5): 216-234. [DOI:10.1016/j.soilbio.2012.11.009]
10. Cheng, F., X. Peng, P. Zhao, J. Yuan, C. Zhong, Y. Cheng, C. Cui and S. Zhang. 2013. Soil microbial biomass, basal respiration and enzyme activity of main forest types in the Qinling Mountains. PLoS One, 8(6): e67353. [DOI:10.1371/journal.pone.0067353]
11. Ebrahimi, E. and J. Mokhtari. 1998. Chamestan Forest and Rangeland Research Station (Noor) from the beginning to the present. Internal report of Natural Resources and Animal Sciences Research Center of Mazandaran province, 50 pp (In Persian).
12. Ghazanshahi, J. 2006. Soil and plant analysis. Hooma Publication, 272 pp (In Persian).
13. Guo, Y.J. and J.G. Han. 2008. Soil biochemical properties and arbuscular mycorrhizal fungi as affected by afforestation of rangelands in northern China. Journal of Arid Environments, 72(9): 1690-1697.‌ [DOI:10.1016/j.jaridenv.2008.04.001]
14. Hobbie, S.E., M. Ogdahl, J. Chorover, O.A. Chadwick, J. Oleksyn, R. Zytkowiak and P.B. Reich. 2007. Tree species effects on soil organic matter dynamics: the role of soil cation composition. Ecosystems, 10(6): 999-1018. [DOI:10.1007/s10021-007-9073-4]
15. Hu, Y.L., S.L.Wang and D.H. Zeng. 2006. Effects of single Chinese fir and mixed leaf litters on soil chemical, microbial properties and soil enzyme activities. Plant and Soil, 282(2): 379-386. [DOI:10.1007/s11104-006-0004-5]
16. Kazemi, S., S.M. Hojjati, A. Fallah and K. Barari. 2016. The effect of forest management on soil Net mineralization rate in Khalilmahle, Behshahr forest. Ecology of Iranian Forests, 4(8): 9-18.
17. Kooch, Y. and Z. Zoghi. 2014. Comparison of soil fertility of Acer insigne, Quercus castaneifolia, and Pinus brutia stands in the Hyrcanian forests of Iran. Chinese Journal of Applied and Environmental Biology, 20(4): 899-905.
18. Kooch, Y., B. Samadzadeh and S.M. Hosseini. 2017. The effects of broad-leaved tree species on litter quality and soil properties in a plain forest stand. Catena, 150(4): 223-229. [DOI:10.1016/j.catena.2016.11.023]
19. Kyaschenko, J., K.E. Clemmensen, A. Hagenbo, E. Karltun and B.D. Lindahl. 2017. Shift in fungal communities and associated enzyme activities along an age gradient of managed Pinus sylvestris stands. The ISME journal, 11(5): 863-874. [DOI:10.1038/ismej.2016.184]
20. Labaz, B., B. Galka, A. Bogacz, J. Waroszewski and C. Kabala. 2014. Factors influencing humus forms and forest litter properties in the mid-mountains under temperate climate of southwestern Poland. Geoderma, 230(6): 265-273. [DOI:10.1016/j.geoderma.2014.04.021]
21. León, J.D. and N.W. Osorio. 2014. Role of litter turnover in soil quality in tropical degraded lands of Colombia. The Scientific World Journal, 23(3): 231-243. [DOI:10.1155/2014/693981]
22. Lin, N., N. Bartsch, S. Heinrichs and T. Vor. 2015. Long-term effects of canopy opening and liming on leaf litter production, and on leaf litter and fine-root decomposition in a European beech (Fagus sylvatica L.) forest. Forest Ecology and Management, 338(3): 183-190. [DOI:10.1016/j.foreco.2014.11.029]
23. Liorente, M., B. Glaser and M.B. Turrión. 2010. Storage of organic carbon and black carbon in density fractions of calcareous soils under different land uses. Geoderma, 159(1): 31-38. [DOI:10.1016/j.geoderma.2010.06.011]
24. Moghimian, N. 2018. Ecological potential assessment of forest and non-forest land using soil Eco chemical indices and Cyanobacter diversity. M. Sc. thesis of Forestry, Tarbiat Modares University, 142 pp.
25. Nelson, D.W. and L.E. Sommers. 1982. Total carbon, organic carbon and organic matter, In: Page, A.L., R.H. Miller, and D.R. Keeny, (Eds.), Methods of Soil Analysis, Part 2, Soil Science Society of America, Madison, WI, 539-579. [DOI:10.2134/agronmonogr9.2.2ed.c29]
26. Olsen, S.R., C.V. Cole, F.S. Vatanbe and L.A. Dean. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate, U.S.D.A. cir. 939. Washington D.C, 75-79.
27. Pang, X., W. Ning, L. Qing and W. Bao. 2009. The relation among soil microorganism, enzyme activity and soil nutrients under subalpine Coniferous forest in Western Sichuan. Acta Ecologica Sinica, 29(5): 286-292. [DOI:10.1016/j.chnaes.2009.09.005]
28. Ponge, J.F., B. Jabiol and J.C. Gégout. 2011. Geology and climate conditions affect more humus forms than forest canopies at large scale in temperate forests. Geoderma, 162(1): 187-195. [DOI:10.1016/j.geoderma.2011.02.003]
29. Samadzadeh, B., Y. Kooch and S.M. Hosseini. 2016. The effect of tree covers on topsoil biological indices in a plain forest ecosystem. Journal of Water and Soil Conservation, 23(5): 105-121 (In Persian).
30. Sanji, R. 2017. Comparison of litter, soil biology and biochemistry indices under natural and afforested stands in Sari Region. M.Sc. Thesis of Forestry, Tarbiat Modares University, 165 pp.
31. Soleimani Rahim Abadi, M., M. Akbarinia and Y. Kooch. 2015. Comparison of soil macro elements in the plantation of Forest Stand in Khazar Forest Seed Center, Amol. Ecology of Iranian Forests, 3(6): 46-54.
32. Tavakoli, M. 2018. Detritivores diversity in relation to litter and soil quality characters in degraded and reclaimed forest areas in Hyrcanian region. M. Sc. thesis of Forestry, Tarbiat Modares University, 180 pp.
33. Ushio, M., K. Kitayama and T.C. Balser. 2010. Tree species effects on soil enzyme activities through effects on soil physicochemical and microbial properties in a Tropical Montane Forest on Mt. Kinabalu, Borneo. Pedobiologia, 53(4): 227-233. [DOI:10.1016/j.pedobi.2009.12.003]
34. Walkley, A. and I.A. Black. 1934. An examination of the Degtjareff method for determining organic carbon in soils: Effect of variations in digestion conditions and of inorganic soil constituents. Soil Science, 63(5): 251-263. [DOI:10.1097/00010694-194704000-00001]
35. Wang, Q., F. Xiao, T. He and S. Wang. 2013. Responses of labile soil organic carbon and enzyme activity in mineral soils to forest conversion in the Subtropics. Annals of Forest Science, 70(6): 579-587. [DOI:10.1007/s13595-013-0294-8]
36. Wardle, D.A., R.D. Bardgett, J.N. Klironomos, H. Setälä, W.H. Van der Putten and D.H. Wall. 2004. Ecological linkages between aboveground and belowground biota. Science, 304(6): 1629-1633. [DOI:10.1126/science.1094875]
37. Weland, N. 2009. Diversity and trophic structure of the soil fauna and its influence on litter decomposition in deciduous forests with increasing tree species diversity, PhD thesis, Gottingen University, 239 pp.
38. Xing, S., C. Chen, B. Zhou, H. Zhang, Z. Nang and Z. Xu. 2010. Soil soluble organic nitrogen and active microbial characteristics under adjacent coniferous and broadleaf plantation forests. Journal of Soils and Sediments, 10(4): 748-757. [DOI:10.1007/s11368-009-0159-9]
39. Yang, K. and J.J. Zhu. 2015. Impact of tree litter decomposition on soil biochemical properties obtained from a temperate secondary forest in Northeast China. Journal of Soils and Sediments, 15(1): 13-23. [DOI:10.1007/s11368-014-0975-4]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به بوم‏شناسی جنگل‏های ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Ecology of Iranian Forest

Designed & Developed by : Yektaweb