دوره 7، شماره 14 - ( پاییز و زمستان 1398 )                   جلد 7 شماره 14 صفحات 70-79 | برگشت به فهرست نسخه ها

XML English Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sefidi K. The Influence of Geomorphological Characteristics of Forest Sites on the Decay Dynamics of Dead Trees in Asalem Forests, Western Hyrcanian Region. ifej. 2019; 7 (14) :70-79
URL: http://ifej.sanru.ac.ir/article-1-268-fa.html
سفیدی کیومرث. تأثیر ویژگی‌های فیزیوگرافیک رویشگاه بر پویایی پوسیدگی خشکه دارها در جنگل‌های اسالم. بوم شناسی جنگل های ایران (علمی- پژوهشی). 1398; 7 (14) :70-79

URL: http://ifej.sanru.ac.ir/article-1-268-fa.html

دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران
چکیده:   (661 مشاهده)
     آگاهی از روند پوسیدگی خشکه‌دارها و عوامل رویشگاهی مؤثر بر آن، نقش مهمی در تدوین برنامه‌های مدیریتی حفاظتی در طرح‌های جنگلداری دارد. همچنین بازگشت کربن طی فرآیند تجزیه یکی از مهم­ترین بخش‌های چرخه کربن در بوم‌سامانه‌های جنگلی است. این پژوهش باهدف کمی سازی تأثیر ویژگی‌های فیزیوگرافیک رویشگاه بر پوسیدگی خشکه‌دارهای راش انجام گرفت. تعداد 90 نمونه برش از خشکه‌دار (کنده) راش به­طور تصادفی در سری یک و دو طرح ناو اسالم انتخاب و برای هر نمونه قطر کنده و درجه پوسیدگی ثبت شد. تأثیر شاخص جهت دامنه (AS)، شیب دامنه (TSI) و شاخص شکل زمین (LI) بر ویژگی‌های فیزیکی چوب (دانسیته، وزن، میزان رطوبت) و ترکیبات بیوشیمیایی چوب (لیگنین، سلولز و همی سلولز) و نیز بر روند پوسیدگی بررسی شد. متوسط نرخ پوسیدگی کنده­ های راش 061/ و متوسط دانسیته چوب راش در بین نمونه­های برش 32/0 به­دست آمد که دامنه تغییرات آن بین 05/0 و 62/0 گرم در سانتی­متر مکعب محاسبه شد.  بر اساس نتایج در بین کلاسه‌های چهارگانه پوسیدگی اختلاف معنی‌داری به لحاظ دانسیته و میزان لیگنین و سلولز وجود دارد. شاخص شکل زمین مهم­ترین عامل فیزیوگرافیک مؤثر بر نرخ پوسیدگی خشکه‌دارها بود. درصد لیگنین به شکل معنی‌داری تحت تأثیر فرم زمین قرار داشت. بر این اساس توصیه می‌شود نگهداری حجم مشخصی از وزن خشک در ساختار توده‌های جنگلی با در نظر گرفتن پویایی حجم خشکه‌دارها و نیز اثر پذیری نرخ پوسیدگی از  ویژگی‌های رویشگاه به‌ویژه شرایط فیزیوگرافیک  رویشگاه باشد.
متن کامل [PDF 1098 kb]   (118 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اکولوژی جنگل
دریافت: 1397/6/7 | پذیرش: 1397/9/11 | انتشار: 1398/9/24

فهرست منابع
1. Albrecht, L. 1990. Grundlagen, Ziele und Methodik der Waldökologischen Forschung in Naturwald reservaten. Bayerisches Staatsministerium für Ernährung, Landwirtschaft und Forsten, Müchen.
2. Alavi, S.J., Z.G. Amiri, M.R. Marvie Mohadjer and Z. Nouri. 2008. Spatial distribution of Ulmus glabra in relation to physiographical parameters. Journal of Environment, 43: 93-100 (In Persian).
3. Alidadi, F., M.R. Marvi-Mohadjer, V. Etemad and K. Sefidi. 2015. Decay dynamic of beech and hornbeam trees in mixed beech (Fagus orientalis lipsky) stands. Iranian Journal of Forest and Poplar Research, 22(4): 624-635 (In Persian).
4. Anonymus. 2004. Forestry plan of Asalem booklet. Forest Range and Watershed Management Organization, Iran (In Persian).
5. Barbour, M.G., J.H. Burk, W.D. Pitts, F.S. Gilliam and M.W. Schwartz. 1999. Terrestrial Plant Ecology. Benjamin/Cummings, Addison Wesley Longman, Inc. 649 pp.
6. Berg, B., B. Erhagen, M. Johansson, L. Vesterdal, M. Faituri, P. Sanborn and M. Nilsson. 2013. Manganese dynamics in decomposing needle and leaf litter - a synthesis. Canadian Journal of Forest Research, 43(12): 1127-1136. [DOI:10.1139/cjfr-2013-0097]
7. Beers, T.W., P.E. Dress and L.C. Wensel. 1966. Aspect transformation in site productivity research. Journal of Forestry, 64: 691-692. [DOI:10.1093/jof/64.10.692]
8. Bradford, M.A., R.J. Warren, P. Baldrian, T.W. Crowther, D.S. Maynard, E.E. Oldfield, W.R. Wieder, S.A. Wood and J.R. King. 2014. Climate fails to predict wood decomposition at regional scales. Nature Climate Change, 4: 625-630. [DOI:10.1038/nclimate2251]
9. Bütler, R., L. Patty , R.C. Le Bayon, C. Guenat and R. Schlaepfe. 2007. Log decay of Picea abies in the Swiss Jura Mountains of Central Europe. Forest Ecology and Management, 242(2-3): 791-799. [DOI:10.1016/j.foreco.2007.02.017]
10. Crawford, R.L. 1981. Lignin Biodegradation and Transformation. New York: John Wiley. 280pp.
11. Dunn, C.J. and J. D. Bailey. 2012. Temporal dynamics and decay of coarse wood in early seral habitats of dry-mixed conifer forests in Oregon's Eastern Cascades. Forest Ecology and Management, 276: 71-81. [DOI:10.1016/j.foreco.2012.03.013]
12. Fukasawa, Y. 2015. The geographical gradient of pine log decomposition in Japan. Forest Ecology and Management, 349: 29-35. [DOI:10.1016/j.foreco.2015.04.010]
13. Garrett, L.G., M.O. Kimberley, G.R. Oliver, S.H. Pearce and P.N. Beets. 2012. Decomposition of coarse woody roots and branches in managed Pinus radiata plantations in New Zealand- A time series approach. Forest Ecology and Management, 269: 116-123. [DOI:10.1016/j.foreco.2011.12.030]
14. Garrett, L.G., G.R. Oliver, S.H. Pearce and M.R. Davis. 2008. Decomposition of Pinus radiata coarse woody debris in New Zealand. Forest Ecology and Management, 255: 3839-3845. [DOI:10.1016/j.foreco.2008.03.031]
15. Harmon, M.E. 2009. Woody detritus mass and its contribution to carbon dynamics of old-growth forests: the temporal context. In: Wirth, C., G. Gleixner and M. Heimann (Eds.), Ecological Studies, vol. 207: Old-Growth Forests. Springer, Berlin Heidelberg, 159-190 pp. [DOI:10.1007/978-3-540-92706-8_8]
16. Hérault, B., J. Beauchêne, F. Muller, F. WagnerBaraloto and B. BlancMartin. 2010. Modeling decay rates of dead wood in a Neotropical forest. Oe.L. ecologia, 164: 243-251. [DOI:10.1007/s00442-010-1602-8]
17. Liua, W., D. Schaefer, L. Qiao and X. Liu. 2013. What controls the variability of wood-decay rates? Forest Ecology and Management, 310: 623-631. [DOI:10.1016/j.foreco.2013.09.013]
18. Lombardi, F., P. Cherubini, R. Tognetti, C. Cocozza, B. Lasserre and M. Marchetti. 2013. Investigating biochemical processes to assess deadwood decay of beech and silver fir in Mediterranean mountain forests. Annals of Forest Science, 70(1): 101-111. [DOI:10.1007/s13595-012-0230-3]
19. Mackensen, J. and J. Bauhus. 2003. Density loss and respiration rates in coarse woody debris of Pinus radiata, Eucalyptus regnans and Eucalyptus maculata. Soil Biology and Biochemistry, 35: 177-186. [DOI:10.1016/S0038-0717(02)00255-9]
20. McNab, W.H. 1993. A topographic index to quantify the effect of mesoscale landform on site productivity, Canadian Journal of Forestry Research, 23: 1100-1107 [DOI:10.1139/x93-140]
21. Müller, S.U. and N. Bartsch. 2009. Decay dynamic of coarse and fine woody debris of a beech (Fagus sylvatica L.) forest in Central Germany. European Journal of Forest Research, 128: 287-296. [DOI:10.1007/s10342-009-0264-8]
22. Olson, J.S. 1963. Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44: 322-330. [DOI:10.2307/1932179]
23. Paletto.A. and V. Tosi. 2010. Deadwood density variation with decay class in seven tree species of the Italian Alps, Scandinavian Journal of Forest Research, 25(2): 164-173. [DOI:10.1080/02827581003730773]
24. Petrillo, M., P.G. Cherubini Sartori, S. Abiven, J. Ascher, D. Bertoldi, F. Camin, A. Barbero, R. Larcher and M. Egli. 2015. Decomposition of Norway spruce and European larch coarse woody debris (CWD) in relation to different elevation and exposure in an Alpine setting. I Forest 9: 154-164. [DOI:10.3832/ifor1591-008]
25. Pietikaeinen, J., A.B. MariePettersson and E. Baeth. 2005. Comparison of temperature effects on soil respiration and bacterial and fungal growth rates. Microbiology Ecology, 52: 49-58. [DOI:10.1016/j.femsec.2004.10.002]
26. Pouska, V. and M. Svoboda. 2010. The diversity of wood-decaying fungi in relation to changing site conditions in an old-growth mountain spruce forest, central Europe. European Journal of Forest Research, 129: 219-231. [DOI:10.1007/s10342-009-0324-0]
27. Russell, M.B., C.W. Woodall, A.W. D'Amato, S. Fraver and J.B. Bradford. 2014. Technical note: Linking climate change and downed woody debris decomposition across forests of the eastern United States. Bio geosciences, 11: 6417-6425. [DOI:10.5194/bg-11-6417-2014]
28. Santiago, J.M. and D.R. Amanda. 2005. Dead trees as resources for Forest Wildlife. Extension fact sheet. Ohio State University Express, 12 pp.
29. Sefidi, K., D.F. Darabd and M. Sharari. 2016. The decay time and rate determination in oriental beech (Fagus orientalis Lipsky) dead trees in Asalem forests. Environmental Studies, 42(3): 551-563.
30. Sefidi, K., D.F. Esfandiary and M. Azarian. 2016. Effect of topography on tree species composition and volume of coarse woody debris in an Oriental beech (Fagus orientalis Lipsky) old growth forests, northern Iran. I Forest, 9: 658-665. [DOI:10.3832/ifor1080-008]
31. Sefidi, K. and V. Etemad. 2015. Dead wood characteristics influencing macro fungi species abundance and diversity in Caspian natural beech (Fagus orientalis Lipsky) forests. Forest Systems, 24(2): 1-9. [DOI:10.5424/fs/2015242-06039]
32. Sefidi, K. 2018. Quantitative evaluation of habitat and dead tree abundance in the oriental beech (Fagus orientalis Lipsky) stands, case study from the Siahkal forests, Iranian Journal of Forest and Poplar Research, 26(3): 331-343.
33. Swanson, F.J., T.K. Kratz, N. Caine and R.G. Woodmansee. 1988. Landform Effects on Ecosystem Patterns and Processes. BioScience, 38(2): 92-98. [DOI:10.2307/1310614]
34. Talbot, J.M. and K.K. Treseder. 2012. Interactions among lignin, cellulose, and nitrogen drive litter chemistry-decay relationships. Ecology, 93: 345-354. [DOI:10.1890/11-0843.1]
35. Taleshi, H. and M. Akbarinia. 2012. Biodiversity of Woody and Herbaceous Vegetation Species in Relation to Environmental Factors in Lowland Forests of Eastern Nowshahr. Iranian Journal of Biology, 24(5): 776-777 (In Persian).
36. Tobin, B., K. Black, L. McGurdyand and M. Nieuwenhuis. 2007. Estimates of decay rates of components of coarse woody debris in thinned Sitka spruce stands. Forestry, 80: 455-469. [DOI:10.1093/forestry/cpm024]
37. Urbanova, M., J. Snajdr and P. Baldrian. 2015. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees, Soil Biology and Biochemistry, 84: 53-64. [DOI:10.1016/j.soilbio.2015.02.011]
38. Valipour, A., M. Namiranian, H. Ghazanfari, S.M. Heshmatol Vaezin, M.J. Lexer and T. Plieninger. 2014. Relationships between forest structure and tree's dimensions with physiographical factors in Armardeh forests (Northern Zagros). Iranian Journal of Forest and Poplar Research, 21(1): 30-47 (In Persian).
39. Yan, E., X. Wang, J. Huang, R. Zeng and Gong. 2007. Long - lasting legacy of forest succession and forest management: Characteristics of coarse woody debris in an evergreen broad-leaved forest of Eastern China. Forest Ecology and Management, 252: 98-107. [DOI:10.1016/j.foreco.2007.06.016]
40. Yin, X. 1999. The decay of forest dead wood: numerical modeling and implications based on some 300 data cases from North America. Oecologia, 121: 81-98. [DOI:10.1007/s004420050909]
41. Zar, J.H. 1999. Biostatistical analysis, Ed 4. Upper Saddle River, NJ: Prentice Hall.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:

ارسال پیام به نویسنده مسئول

کلیه حقوق این وب سایت متعلق به بوم‏شناسی جنگل‏های ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2020 All Rights Reserved | Ecology of Iranian Forest

Designed & Developed by : Yektaweb