دوره 11، شماره 21 - ( بهار و تابستان 1402 )                   جلد 11 شماره 21 صفحات 178-170 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

yousofvand mofrad M, soosani J, naghavi H, Abrari Vajari K, Shaabanian N. (2023). Estimation of Biomass and Its Reduction in Forests Affected by Decline in DadAbad Region, Lorestan Province. Ecol Iran For. 11(21), 170-178. doi:10.61186/ifej.11.21.170
URL: http://ifej.sanru.ac.ir/article-1-490-fa.html
یوسفوند مفرد محسن، سوسنی جواد، نقوی حامد، ابراری واجاری کامبیز، شعبانیان نقی. برآورد زیست توده و کاهش آن در جنگل های متأثر از زوال در منطقه دادآباد استان لرستان بوم شناسی جنگل های ایران (علمی- پژوهشی) 1402; 11 (21) :178-170 10.61186/ifej.11.21.170

URL: http://ifej.sanru.ac.ir/article-1-490-fa.html


1- گروه جنگلداری، دانشکده کشاورزی و منابع طبیعی دانشگاه لرستان، خرم‌آباد، ایران
2- گروه جنگلداری، دانشکده منابع طبیعی دانشگاه کردستان، سنندج، ایران
چکیده:   (2798 مشاهده)
چکیده مبسوط
مقدمه و هدف: جنگل­ های زاگرس به عنوان گسترده ­ترین و در عین حال آسیب­ دیده ­ترین جنگل ­های کشور طی سالیان اخیر تحت تاثیر زوال گسترده بلوط قرار گرفته ­اند که از این لحاظ در وضعیت بحرانی قرار دارند. زوال درختان بلوط به عنوان یک پدیدهی گسترده و پیچیده توصیف شده که موجب کاهش قدرت رشد و ضعف فیزیولوژیک و سپس حمله عوامل بیماریزا میشود. در حال حاضر که پایداری این جنگل‌ها با یک مشکل جدی روبرو است، برای بررسی راهبردهای صحیح مدیریتی برای مقابله با پدیده زوال، قبل از اینکه این بوم­ سازگان ارزشمند به طور کامل نابود شوند، به اطلاعات پایه و اساسی همچون نقشه گسترش زوال و میزان زیست‌توده از دست رفته درختان در نتیجه زوال نیاز است. هدف از مطالعه حاضر، برآورد میزان زیست‌توده روی زمین در درختان خشکیده بلوط در نتیجه زوال جنگل‌های زاگرس است که در جنگل‌های منطقه دادآباد استان لرستان انجام گرفت.
مواد و روش‌ها: این مطالعه در جنگل‌های دادآباد واقع در جنوب غربی خرم‌آباد در استان لرستان انجام شد. برای این منظور تعداد 40 پایه از درختان خشکیده به صورت تصادفی انتخاب و پارامترهای بیومتریک همچون قطر در ارتفاع برابر زانو، قطر در ارتفاع برابر سینه، ارتفاع و قطر تاج آن­ها اندازه‌گیری ‌شد. اجزای مختلف درخت به تفکیک، خشک و توزین گردیدند. با استفاده از تحلیل رگرسیونی، زیست­ توده اندام‌های مختلف در مقابل متغیر‌های مستقل قطر در ارتفاع برابر زانو، قطر در ارتفاع برابر سینه، ارتفاع و قطر تاج، مدل­ سازی شد. در نهایت در سطح 32 هکتار از عرصه مورد نظر آماربرداری به صورت صددرصد انجام گرفت که مشخصه­ های مختلف تمام درختان بلوط ایرانی برداشت شد.
یافته‌ها: نتایج این تحقیق نشان داد که روابطی قوی برای برآورد میزان زیست­ توده درختان بلوط ایرانی قابل ایجاد است. نتیجه برازش مدل­ های خطی و غیر خطی برای برآورد زیست­ توده این گونه درختی نشان داد که در صورت استفاده از قطر متوسط تاج درخت به عنوان متغیر مستقل، مدل مناسب­ تر، مدل توانی با ضریب تبیین 0/857 بود. همچنین نتایج روایی مدل یا مقدار درصدی خطای جذر میانگین مربعات (RMSE%) برای معادله بدست آمده،  9/082 درصد بود. مجموع زیست ­توده در منطقه مورد مطالعه 389/994 تن بوده که 39/54% آن یعنی 154/226 تن از زیست ­توده سطح منطقه براساس زوال از بین رفته است.
نتیجه گیری: نتایج نشان داد که در مقایسه بین مدل­ های رگرسیونی خطی و غیرخطی، بهترین مدل برای برآورد زیست ­توده این گونه، مدل توانی بر مبنای قطر متوسط تاج با 0/857R2= بود . به طور کلی استفاده از قطر متوسط تاج به عنوان متغیر برآوردکننده برای گونه بلوط ایرانی، می­ تواند برآورد بهتر و مناسبتری از زیست­ توده این درختان را نشان دهد.

 
متن کامل [PDF 985 kb]   (650 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1401/9/25 | پذیرش: 1401/11/10

فهرست منابع
1. Abich, A., T. Mucheye, M. Tebikew, Y. Gebremariam and A. Alemu. 2019. Species-specific allometric equations for improving aboveground biomass estimates of dry deciduous woodland ecosystems. Journal of Forestry Research. 30 (2019): 1619-1632 pp. [DOI:10.1007/s11676-018-0707-5]
2. Adl, H.R. 2007. Estimation of leaf biomass and leaf area index of two major species in Yasuj forests. Iranian Journal of Forest and Poplar Research, 15(4): 289-300 (In Persian).
3. Adrien, N., C. Djomo and D. Chimi. 2017. Tree allometric equations for estimation of above, below and total biomass in a tropical moist forest: Case study with application to remote sensing. Forest Ecology and Management, 391 :184-193. [DOI:10.1016/j.foreco.2017.02.022]
4. Anonymous. 2012. Guidelines for sustainable forest management in Zagros forest systems in order to prevent and control oak decline. Natural Resources and Watershed management Organization I.R. Iran. 60 pp (In Persian).
5. Baghdadi, N., J.S. Bailly, N. Barbier, V. Gond, M.E. Hajj , F. Fabre and B. Bourgine. 2014. Canopy Height Estimation in French Guiana with LiDAR ICESat/GLAS Data Using Principal Component Analysis and Random Forest Regressions. Remote Sensing. 2014, 6: 11883-11914. [DOI:10.3390/rs61211883]
6. Basuki, T.M., P.E. Van Laake, A.K. Skidmore and Y.A. Hussin. 2009. Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. Forest Ecology and Management, 257(8):1684-1694. [DOI:10.1016/j.foreco.2009.01.027]
7. Brady, C., S. Denman, S. Kirk, S. Venter, P. Rodríguez-Palenzuela and T. Coutinho. 2010. Description of Gibbsiella quercinecans gen. nov., sp. nov., associated with Acute Oak Decline. Systematic and Applied Microbiology, 33(8): 444-450. [DOI:10.1016/j.syapm.2010.08.006]
8. Bruce, W.N., J.L.G. Mesquitaa, A.D.S. Silas Garcia, T.B. Getulio and B.C. Luciana. 1999. Allometric regressions for improved estimate of secondary forest biomass in the central Amazon. Forest Ecology and Management, 117(9):149-167. [DOI:10.1016/S0378-1127(98)00475-7]
9. Camy, C., C. Delatour and B. Marcais. 2003. Relationships between soil factors, Quercus robur health, Collybia fusipes root infection and Phytophthora presence. Annals of Forest Science, 60: 419-426. [DOI:10.1051/forest:2003034]
10. Chave, J., M. Réjou-Méchain, A. Búrquez, E. Chidumayo, M.S. Colgan, W.B.C. Delitti, A. Duque, T. Eid, P.M. Fearnside, R.C. Goodman, M. Henry, A. Martínez-Yrízar, W.A. Mugasha, H.C. Muller-Landau, M. Mencuccini, B.W. Nelson, A. Ngomanda, E.M. Nogueira, E. Ortiz-Malavassi, R. Pélissier, P. Ploton, C.M. Ryan, J.G. Saldarriaga, G. Vieilledent. 2014. Improved allometric models to estimate the aboveground biomass of tropical trees.Global Change Bioligy, 20(2014): 3177-3190 pp. [DOI:10.1111/gcb.12629]
11. Cole, Th.G. and J.J. Ewel. 2006. Allometric equations for four valuable tropical tree species. Forest Ecology and Management, 229: 351-360. [DOI:10.1016/j.foreco.2006.04.017]
12. Dobbertin, M.P., T. Mayer, E. Wohlgemuth, U. Feldmeyer-Christe, N. Graf, E. Zimmermann, A. Rigling. 2005. The decline of Pinus sylvestris L. forests in the Swiss Rhone valley-a result of drought stress? Phyton, 45: 153-156.
13. Dwyer, J.P., B.E. Cutter and J.J. Wetteroff. 1995. A dendrochronological study of black and scarlet oak decline in the Missouri Ozarks. Forest Ecology and Management, 75(95): 69-75. [DOI:10.1016/0378-1127(95)03537-K]
14. Fehrmann, L. and C. Kleinn. 2006. General considerations about the use of allometric equations for biomass estimation on the example of Norway spruce in central Europe, Forest Ecology and Management, 236: 412-421 [DOI:10.1016/j.foreco.2006.09.026]
15. Gallego, F.J., A.P. Algaba and R. Férnandez-Escobar. 1999. Etiology of oak decline in Spain. European Journal of Plant Pathology, 29:17-27. [DOI:10.1046/j.1439-0329.1999.00128.x]
16. Gould S.J. 1966. Allometry and size of ontogeny and phylogeny. Biology Revier, 41(1966): 587-640. [DOI:10.1111/j.1469-185X.1966.tb01624.x]
17. Günthardt Goerg, M.S., R. Matyssek, C. Scheidegger and T. Keller. 1993. Differentiation and structural decline in the leaves and bark of birch (Betula pendula) under low ozone concentrations. Trees, 7: 104-114. [DOI:10.1007/BF00225477]
18. Hamzehpour, M., H. Kia-daliri and K. Bordbar. 2011. Preliminary study of manna oak (Quercus brantii Lindl.) tree decline in Dashte-Barm of Kazeroon, Fars province. Iranian Journal of Forest and Poplar Research, 19(2): 352-363.
19. Heidari Safari Kouchi, A., T. Rostami Shahraji, R. Ebrahimi Atani and Y. Iranmanesh. 2021. Investigation the Accuracy of Estimating the Biomass of Poplar (Populus alba L.) Trees using Allometric Equations. Ecology of Iranian Forests, 9(17): 133-141. [DOI:10.52547/ifej.9.17.133]
20. Heiru Sebrala a, Amsalu Abich b, Mesele Negash c., Zerihun Asrat c, Bohdan Lojka, 2022. Tree allometric equations for estimating biomass and volume of Ethiopian forests and establishing a database: Review, Trees, Forests and People 9, 2022.100314. [DOI:10.1016/j.tfp.2022.100314]
21. Heitzman, E., A. Grell, M. Spetich and D. Starkey. 2007. Changes in forest structure associated with oak decline in severely impacted areas of northern Arkansas. Southern Journal of Applied Forestry 31: 17-22. [DOI:10.1093/sjaf/31.1.17]
22. Henry, M., N. Picard, C. Trotta, R. Manlay, R. Valentini, M. Bernoux and L. Saint-André. 2011. Estimating tree biomass of sub-Saharan African forests: a review of available allometric equations. Silva Fenn, 45(2011): 477-509. [DOI:10.14214/sf.38]
23. Hoseinzadeh, J. and M. Pourhashemi. 2015. The study of crown indicators in Quercus brantii tress in relationship with mortality phenomenon in Ilam forest's. Iranian Journal of Forest, 7(1): 57-66 (In Persian).
24. Jazirehi M.H., and M. Ebrahimi Rostaghi. 2013. Silviculture in zagros. University of Tehran Press, Tehran, 560 p (In Persian).
25. Jump, A.S., Hunt, J. M. and J. Peñuelas. 2006. Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Global Change Biology, 12(11): 2163-2174. [DOI:10.1111/j.1365-2486.2006.01250.x]
26. Kabrick, J.M., D.C. Dey, R.G. Jensen, and M. Walllendorf, 2008. The role of environmental factors in oak decline and mortality in the Ozark Highlands. Forest Ecology and Management, 255: 1409-1417. [DOI:10.1016/j.foreco.2007.10.054]
27. Khosravi, Sh. 2010. Biomass Production Capability of Leaf and Branch of Lebanon Oak (Quercus libani Oliv.) in Northern Zagros Forests. M.Sc. thesis, Faculty of Natural Resources, University of Tehran, Karaj, 105 p (In Persian).
28. Kwaśna, H. and P. Łakomy. 2006. Rosellinia aquila Among Fungi on Branches of Sessile Oak with Symptoms of Decline. Journal of Phytopathology, 154: 224-229. [DOI:10.1111/j.1439-0434.2006.01088.x]
29. Mahdavi, A., J. Mirzaee and O. Karami. 2105. Condition of declined trees in Zagros forest's (Case study: Boureh local area in Ilam province). Journal of Sustainable Forest Development, 1(4): 329-340 (In Persian).
30. Mahmoudi, M., E. Ramezani Kakroudi, A.B. Shafiei, A. Salehi, M. Pato and O. Hoseinzadeh. 2023. Estimation of Carbon Storage in Biomass and Litter in Plantations of Lavizan Forest Park in Tehran. Ecology of Iranian Forests, 10(20): 204-214. [DOI:10.52547/ifej.10.20.204]
31. Marvie Mohadjer, M.R. 2011. Silviculture. University of Tehran Press, Tehran, 418 p (In Persian).
32. Manion, P.D. 1991. Tree disease concepts. Ed. 2. Prentice Hall, Englewood Cliffs, NJ. 409 p.
33. Nelson, B.W., R. Mesquitaa, G. Pereira, J.L. Aquino de Souza, S.G. Getulio Teixeira Batista and L. Bovino Couto. 1999. Allometric regressions for improved estimate of secondary forest biomass in the central Amazon. Forest Ecology and Management, 117(2): 149-167 [DOI:10.1016/S0378-1127(98)00475-7]
34. Oswalt, S.N., T.J. Brandeis and C.W. Woodall. 2007. Contribution of dead wood to biomass and carbon stocks in the Caribbean: St. John, U.S. Virgin Islands. Biotropica, 40(1): 20-27. [DOI:10.1111/j.1744-7429.2007.00343.x]
35. Pranab Kumar Pati, P.K., M.L. Khan and P.K. Khare. 2022. Allometric equations for biomass and carbon stock estimation of small diameter woody species from tropical dry deciduous forests: Support to REDD+. Trees, Forests and People, 9(2022): 100289 [DOI:10.1016/j.tfp.2022.100289]
36. Rollins, M.G., R.E. Keane and R.A. Parsons. 2004. Mapping fuels and fire regimes using remote sensing, ecosystem simulation, and gradient modeling. Ecological Applications, 14(1): 75-95. [DOI:10.1890/02-5145]
37. Sánchez, M.E., P. Caetano, J. Ferraz and A. Trapero. 2002. Phytophthora disease of Quercus ilex in southwestern Spain. Forest Pathology 32: 5-18. [DOI:10.1046/j.1439-0329.2002.00261.x]
38. Schulze, E.D., 1989. Air Pollution and Forest Decline in a Spruce (Picea abies) Forest. Science, 244(4906): 776-783. [DOI:10.1126/science.244.4906.776]
39. Siwecki, R. and K. Ufnalski. 1998. Review of oak stand decline with special reference to the role of drought in Poland. European Journal of Plant Pathology, 28: 99-112. [DOI:10.1111/j.1439-0329.1998.tb01171.x]
40. Soares, M.L.G. and Y. Schaeffer-Novelli. 2005. Aboveground biomass of mangrove species. I. Analysis of Models. Estuarine, Coastal and Shelf Science. 65(1): 1-18. [DOI:10.1016/j.ecss.2005.05.001]
41. Sohrabi H. and A. Shirvani. 2012. Allometric equations for estimating standing biomass of Atlantic Pistache (Pistacia atlantica var. mutica) in Khojir National Park. Iranian Journal of Forest, 4: 1.55-64 (In Persian(.
42. Son, K.C., S.J. Um Kim, J.E. Song and H.R. Kwack. 2004. Effect of horticultural therapy on the changes of self-esteem and sociality of individuals with chronic schizophrenia. Acta Horticulturae, 639: 185-191. [DOI:10.17660/ActaHortic.2004.639.23]
43. Sonesson, K., 1999. Oak Decline in Southern Sweden. Scandinavian Journal of Forest Research, 14: 368-375. [DOI:10.1080/02827589950152692]
44. Staley, J.M. 1965. Decline and mortality of red and scarlet oaks. Forest Science, 11: 2-17.
45. Steiner, K.C. 1998. A decline-model interpretation of genetic and habitat structure in oak populations and its implications for silviculture. European Journal of Plant Pathology 28: 113-120. [DOI:10.1111/j.1439-0329.1998.tb01172.x]
46. Vafaei S., J. Soosani, K. Adeli, H. Fadaei and H. Naghavi, 2017. Estimation of aboveground biomass using optical and radar images (Case study: Nav-e Asalem forests, Gilan). Iranian Journal of Forest and Poplar Research, 25(2): 320-331.
47. Vahedi, A.A. 2014. Optimal allometric biomass equations for Hornbeam (Carpinus betulus L.) boles within the Hyrcanian forests. Iranian Journal of Forest and Poplar Research. 22(2): 225-236 (In Persian). [DOI:10.17221/39/2014-JFS]
48. Yousofvand Mofrad, M., J. Soosani, E. Ostakh and R. Hosseinzadeh. 2017. Estimate the above ground biomass in Brant's oak (Quercus brantii Lindl.).(Case Study: Region Melah-Shbanan Khorramabad). J. of Wood and Forest Science and Technology, 24(4); 163-172.
49. Zianis, D. and M. Mencuccini. 2004. On simplifying allometric analyses of forest biomass. Forest Ecology and Management, 187: 311-332. [DOI:10.1016/j.foreco.2003.07.007]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به بوم‏شناسی جنگل‏های ایران می‌باشد.

طراحی و برنامه نویسی: یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Ecology of Iranian Forest

Designed & Developed by: Yektaweb