1. Aaltonen, H., Köster, K., Köster, E., Berninger, F., Zhou, X., Karhu, K., Biasi, C., Bruckman, V., Palviainen, M., & Pumpanen, J. (2019). Forest fires in Canadian permafrost region: the combined effects of fire and permafrost dynamics on soil organic matter quality. Biogeochemistry, 143, 257-274. doi.org/10.1007/s10533-019-00560-x [
DOI:10.1007/s10533-019-00560-x]
2. Agbeshie, A. A., Abugre, S., Atta-Darkwa, T., & Awuah, R. (2022). A review of the effects of forest fire on soil properties. Journal of Forestry Research, 33(5), 1419-1441. [
DOI:10.1007/s11676-022-01475-4]
3. Akburak, S., Son, Y., Makineci, E., & Çakir, M. (2018). Impacts of low-intensity prescribed fire on microbial and chemical soil properties in a Quercus frainetto forest. Journal of Forestry Research, 29, 687-696. doi.org/10.1007/s11676-017-0486-4 [
DOI:10.1007/s11676-017-0486-4]
4. Alcañiz, M., Outeiro, L., Francos, M., Farguell, J., & Úbeda, X. (2016). Long-term dynamics of soil chemical properties after a prescribed fire in a Mediterranean forest (Montgrí Massif, Catalonia, Spain). Science of the total environment, 572, 1329-1335. [
DOI:10.1016/j.scitotenv.2016.01.115]
5. Anderson, J. P. (1983). Soil respiration. Methods of soil analysis: part 2 chemical and microbiological properties, 9, 831-871. [
DOI:10.2134/agronmonogr9.2.2ed.c41]
6. Badía-Villas, D., González-Pérez, J. A., Aznar, J. M., Arjona-Gracia, B., & Martí-Dalmau, C. (2014). Changes in water repellency, aggregation and organic matter of a mollic horizon burned in laboratory: Soil depth affected by fire. Geoderma, 213, 400-407. [
DOI:10.1016/j.geoderma.2013.08.038]
7. Badía, D., Martí, C., Aguirre, A. J., Aznar, J. M., González-Pérez, J., De la Rosa, J., León, J., Ibarra, P., & Echeverría, T. (2014). Wildfire effects on nutrients and organic carbon of a Rendzic Phaeozem in NE Spain: changes at cm-scale topsoil. Catena, 113, 267-275. [
DOI:10.1016/j.catena.2013.08.002]
8. Barreiro, A., & Díaz-Raviña, M. (2021). Fire impacts on soil microorganisms: Mass, activity, and diversity. Current Opinion in Environmental Science & Health, 22, 100264. [
DOI:10.1016/j.coesh.2021.100264]
9. Barreiro, A., Martín, A., Carballas, T., & Díaz-Raviña, M. (2010). Response of soil microbial communities to fire and fire-fighting chemicals. Science of the total environment, 408(24), 6172-6178. [
DOI:10.1016/j.scitotenv.2010.09.011]
10. Barreiro, A., Martín, A., Carballas, T., & Díaz-Raviña, M. (2016). Long-term response of soil microbial communities to fire and fire-fighting chemicals. Biology and Fertility of Soils, 52(7), 963-975. [
DOI:10.1007/s00374-016-1133-5]
11. Beare, M. H., Neely, C. L., Coleman, D. C., & Hargrove, W. L. (1990). A substrate-induced respiration (SIR) method for measurement of fungal and bacterial biomass on plant residues. Soil Biology and Biochemistry, 22(5), 585-594. [
DOI:10.1016/0038-0717(90)90002-H]
12. Bennett, L. T., Aponte, C., Baker, T. G., & Tolhurst, K. G. (2014). Evaluating long-term effects of prescribed fire regimes on carbon stocks in a temperate eucalypt forest. Forest Ecology and Management, 328, 219-228. [
DOI:10.1016/j.foreco.2014.05.028]
13. Bento-Gonçalves, A., Vieira, A., Úbeda, X., & Martin, D. (2012). Fire and soils: Key concepts and recent advances. Geoderma, 191, 3-13. [
DOI:10.1016/j.geoderma.2012.01.004]
14. Binkley, D., & Fisher, R. F. (2019). Ecology and management of forest soils. John Wiley & Sons. [
DOI:10.1002/9781119455745]
15. Blagodatskaya, E. V., & Anderson, T.-H. (1998). Interactive effects of pH and substrate quality on the fungal-to-bacterial ratio and qCO2 of microbial communities in forest soils. Soil Biology and Biochemistry, 30(10-11), 1269-1274. [
DOI:10.1016/S0038-0717(98)00050-9]
16. Boerner, R. E., Huang, J., & Hart, S. C. (2009). Impacts of Fire and Fire Surrogate treatments on forest soil properties: a meta‐analytical approach. Ecological Applications, 19(2), 338-358. [
DOI:10.1890/07-1767.1]
17. Bond, W. J., & Van Wilgen, B. W. (2012). Fire and plants (Vol. 14). Springer Science & Business Media.
18. Borgogni, F., Lavecchia, A., Mastrolonardo, G., Certini, G., Ceccherini, M. T., & Pietramellara, G. (2019). Immediate-and short-term wildfire impact on soil microbial diversity and activity in a Mediterranean forest soil. Soil Science, 184(2), 35-42. [
DOI:10.1097/SS.0000000000000250]
19. Certini, G. (2005). Effects of fire on properties of forest soils: a review. Oecologia, 143, 1-10. [
DOI:10.1007/s00442-004-1788-8]
20. Certini, G., Moya, D., Lucas-Borja, M. E., & Mastrolonardo, G. (2021). The impact of fire on soil-dwelling biota: A review. Forest Ecology and Management, 488, 118989. [
DOI:10.1016/j.foreco.2021.118989]
21. Chandra, K., & Bhardwaj, A. K. (2015). Incidence of forest fire in India and its effect on terrestrial ecosystem dynamics, nutrient and microbial status of soil. International Journal of Agriculture and Forestry, 5(2), 69-78.
22. Cui, X., Gao, F., Song, J., Sang, Y., Sun, J., & Di, X. (2014). Changes in soil total organic carbon after an experimental fire in a cold temperate coniferous forest: A sequenced monitoring approach. Geoderma, 226, 260-269. [
DOI:10.1016/j.geoderma.2014.02.010]
23. D'Ascoli, R., Rutigliano, F. A., De Pascale, R. A., Gentile, A., & De Santo, A. V. (2005). Functional diversity of the microbial community in Mediterranean maquis soils as affected by fires. International Journal of Wildland Fire, 14(4), 355-363. [
DOI:10.1071/WF05032]
24. Diao, T., Peng, Z., Niu, X., Yang, R., Ma, F., & Guo, L. (2020). Changes of soil microbes related with carbon and nitrogen cycling after long-term CO2 enrichment in a typical Chinese maize field. Sustainability, 12(3), 1250. [
DOI:10.3390/su12031250]
25. Dilly, O. (2005). Microbial energetics in soils. In Microorganisms in soils: roles in genesis and functions (pp. 123-138). Springer. [
DOI:10.1007/3-540-26609-7_6]
26. Downing, T. A., Imo, M., Kimanzi, J., & Otinga, A. N. (2017). Effects of wildland fire on the tropical alpine moorlands of Mount Kenya. Catena, 149, 300-308. doi.org/10.1016/j.catena.2016.10.003 [
DOI:10.1016/j.catena.2016.10.003]
27. Dzwonko, Z., Loster, S., & Gawroński, S. (2015). Impact of fire severity on soil properties and the development of tree and shrub species in a Scots pine moist forest site in southern Poland. Forest Ecology and Management, 342, 56-63. [
DOI:10.1016/j.foreco.2015.01.013]
28. Fernández-García, V., Marcos, E., Fernández-Guisuraga, J. M., Taboada, A., Suárez-Seoane, S., & Calvo, L. (2019). Impact of burn severity on soil properties in a Pinus pinaster ecosystem immediately after fire. International Journal of Wildland Fire, 28(5), 354-364. [
DOI:10.1071/WF18103]
29. Flinn, M. A., & Wein, R. W. (1977). Depth of underground plant organs and theoretical survival during fire. Canadian Journal of Botany, 55(19), 2550-2554.
https://doi.org/10.1139/b77-291 [
DOI:https://doi.org/10.1139/b77-291]
30. Fontúrbel, M., Barreiro, A., Vega, J., Martín, A., Jiménez, E., Carballas, T., Fernández, C., & Díaz-Raviña, M. (2012). Effects of an experimental fire and post-fire stabilization treatments on soil microbial communities. Geoderma, 191, 51-60. [
DOI:10.1016/j.geoderma.2012.01.037]
31. Gimeno‐García, E., Andreu, V., & Rubio, J. L. (2000). Changes in organic matter, nitrogen, phosphorus and cations in soil as a result of fire and water erosion in a Mediterranean landscape. European journal of soil science, 51(2), 201-210. [
DOI:10.1046/j.1365-2389.2000.00310.x]
32. Goberna, M., García, C., Insam, H., Hernández, M., & Verdú, M. (2012). Burning fire-prone Mediterranean shrublands: immediate changes in soil microbial community structure and ecosystem functions. Microbial ecology, 64, 242-255. doi.org/10.1007/s00248-011-9995-4 [
DOI:10.1007/s00248-011-9995-4]
33. González-Pérez, J. A., González-Vila, F. J., Almendros, G., & Knicker, H. (2004). The effect of fire on soil organic matter-a review. Environment international, 30(6), 855-870. [
DOI:10.1016/j.envint.2004.02.003]
34. Granged, A. J., Jordán, A., Zavala, L. M., Muñoz-Rojas, M., & Mataix-Solera, J. (2011). Short-term effects of experimental fire for a soil under eucalyptus forest (SE Australia). Geoderma, 167, 125-134. [
DOI:10.1016/j.geoderma.2011.09.011]
35. Hobley, E. U., Brereton, A. J. L. G., & Wilson, B. (2017). Forest burning affects quality and quantity of soil organic matter. Science of the total environment, 575, 41-49. doi: 10.1016/j.scitotenv.2016.09.231 [
DOI:10.1016/j.scitotenv.2016.09.231]
36. Hosseini, v., Mohammadi Samani, K., & Abdolmaleki, F. (2022). Evaluation influece of wildfire on the chemical properties of forest soil at the top and toe slope in Sarvabad, Kurdistan province. Applied Soil Research, 10(2), 29-39.
37. Inbar, A., Lado, M., Sternberg, M., Tenau, H., & Ben-Hur, M. (2014). Forest fire effects on soil chemical and physicochemical properties, infiltration, runoff, and erosion in a semiarid Mediterranean region. Geoderma 221, 131-138. [
DOI:10.1016/j.geoderma.2014.01.015]
38. Iriberri, J., Rodriguez, M., Egea, L., & Barcina, I. (1988). Spatial and seasonal distribution of bacterial physiological groups in two reservoirs with different trophic levels. Acta hydrochimica et hydrobiologica, 16(2), 145-155. [
DOI:10.1002/aheh.19880160204]
39. Jaiswal, R. K., Mukherjee, S., Raju, K. D., & Saxena, R. (2002). Forest fire risk zone mapping from satellite imagery and GIS. International journal of applied earth observation and geoinformation, 4(1), 1-10. doi.org/10.1016/S0303-245 [
DOI:10.1016/S0303-2434(02)00006-5]
40. Javanmiri Pour, M. (2021). The characteristics of wildfires created in Zagros forest ecosystem in Kermanshah province (Case study: forests and rangelands of Gilan-e-Gharb region). Journal of Plant Ecosystem Conservation, 9(1), 219-246. https://www.magiran.com/paper/2326883
41. Keeley, J. E. (2006). Fire management impacts on invasive plants in the western United States. Conservation Biology, 20(2), 375-384. [
DOI:10.1111/j.1523-1739.2006.00339.x]
42. Kennedy, N. M., Robertson, S. J., Green, D. S., Scholefield, S. R., Arocena, J. M., Tackaberry, L. E., Massicotte, H. B., & Egger, K. N. (2015). Site properties have a stronger influence than fire severity on ectomycorrhizal fungi and associated N-cycling bacteria in regenerating post-beetle-killed lodgepole pine forests. Folia microbiologica, 60, 399-410. [
DOI:10.1007/s12223-014-0374-7]
43. Lewis, S. L., Edwards, D. P., & Galbraith, D. (2015). Increasing human dominance of tropical forests. Science, 349(6250), 827-832. [
DOI:10.1126/science.aaa9932]
44. Li, D., Sun, S., Zhou, T., Du, Z., Wang, J., Li, B., Wang, J., & Zhu, L. (2022). Effects of pyroxsulam on soil enzyme activity, nitrogen and carbon cycle-related gene expression, and bacterial community structure. Journal of Cleaner Production, 355, 131821. [
DOI:10.1016/j.jclepro.2022.131821]
45. Liu, G., Gu, B., Miao, S., Li, Y., Migliaccio, K., & Qian, Y. (2010). Phosphorus release from ash and remaining tissues of two wetland species after a prescribed fire. Journal of environmental quality, 39(5), 1585-1593. [
DOI:10.2134/jeq2009.0461]
46. Liu, J., Qiu, L., Wang, X., Wei, X., Gao, H., Zhang, Y., & Cheng, J. (2018). Effects of wildfire and topography on soil nutrients in a semiarid restored grassland. Plant and Soil, 428, 123-136. doi.org/10.1007/s11104-018-3659-9 [
DOI:10.1007/s11104-018-3659-9]
47. Maksimova, E., & Abakumov, E. (2015). Wildfire effects on ash composition and biological properties of soils in forest-steppe ecosystems of Russia. Environmental Earth Sciences, 74, 4395-4405. [
DOI:10.1007/s12665-015-4497-1]
48. Mataix-Solera, J., Cerdà, A., Arcenegui, V., Jordán, A., & Zavala, L. (2011). Fire effects on soil aggregation: a review. Earth-Science Reviews, 109(1-2), 44-60. [
DOI:10.1016/j.earscirev.2011.08.002]
49. Mataix-Solera, J., Guerrero, C., García-Orenes, F., Bárcenas, G. M., & Torres, M. P. (2009). Forest fire effects on soil microbiology. In Fire effects on soils and restoration strategies (pp. 149-192). CRC press. [
DOI:10.1201/9781439843338-c5]
50. Miraki, M., Akbarinia, M., Ghazanfari, H., Ezzati, S., & Heidari, A. (2014). Presentation of management solutions for firefighting, using the decision support system at Northern Zagros forests (Case study: Marivan forests). Iranian Journal of Forest and Poplar Research, 21(4), 742-755. doi.org/10.22092/ijfpr.2014, 5147
51. Moya, D., González-De Vega, S., Lozano, E., García-Orenes, F., Mataix-Solera, J., Lucas-Borja, M., & de Las Heras, J. (2019). The burn severity and plant recovery relationship affect the biological and chemical soil properties of Pinus halepensis Mill. stands in the short and mid-terms after wildfire. Journal of environmental management, 235, 250-256. doi.org/10.1016/j.jenvman.2019.01.029 [
DOI:10.1016/j.jenvman.2019.01.029]
52. Muñoz‐Rojas, M., Erickson, T. E., Dixon, K. W., & Merritt, D. J. (2016). Soil quality indicators to assess functionality of restored soils in degraded semiarid ecosystems. Restoration Ecology, 24, S43-S52. [
DOI:10.1111/rec.12368]
53. Muqaddas, B., Zhou, X., Lewis, T., Wild, C., & Chen, C. (2015). Long-term frequent prescribed fire decreases surface soil carbon and nitrogen pools in a wet sclerophyll forest of Southeast Queensland, Australia. Science of the total environment, 536, 39-47. doi.org/10.1016/j.scitotenv.2015.07.023 [
DOI:10.1016/j.scitotenv.2015.07.023]
54. Ngole-Jeme, V. M. (2019). Fire-induced changes in soil and implications on soil sorption capacity and remediation methods. Applied Sciences, 9(17), 3447. [
DOI:10.3390/app9173447]
55. Palese, A., Giovannini, G., Lucchesi, S., Dumontet, S., & Perucci, P. (2004). Effect of fire on soil C, N and microbial biomass. Agronomie, 24(1), 47-53. [
DOI:10.1051/agro:2003061]
56. Pellegrini, A. F., Harden, J., Georgiou, K., Hemes, K. S., Malhotra, A., Nolan, C. J., & Jackson, R. B. (2022). Fire effects on the persistence of soil organic matter and long-term carbon storage. Nature Geoscience, 15(1), 5-13. [
DOI:10.1038/s41561-021-00867-1]
57. Pivello, V. R., Oliveras, I., Miranda, H. S., Haridasan, M., Sato, M. N., & Meirelles, S. T. (2010). Effect of fires on soil nutrient availability in an open savanna in Central Brazil. Plant and Soil, 337, 111-123. [
DOI:10.1007/s11104-010-0508-x]
58. Pourreza, M., Hosseini, S. M., Sinegani, A. A. S., Matinizadeh, M., & Dick, W. A. (2014). Soil microbial activity in response to fire severity in Zagros oak (Quercus brantii Lindl.) forests, Iran, after one year. Geoderma, 213, 95-102. [
DOI:10.1016/j.geoderma.2013.07.024]
59. Rayment, G. E., & Lyons, D. J. (2011). Soil chemical methods: Australasia (Vol. 3). CSIRO publishing. [
DOI:10.1071/9780643101364]
60. Resende, J. C. F., Markewitz, D., Klink, C. A., Bustamante, M. M. d. C., & Davidson, E. A. (2011). Phosphorus cycling in a small watershed in the Brazilian Cerrado: impacts of frequent burning. Biogeochemistry, 105, 105-118. [
DOI:10.1007/s10533-010-9531-5]
61. Reyes, O., García-Duro, J., & Salgado, J. (2015). Fire affects soil organic matter and the emergence of Pinus radiata seedlings. Annals of forest science, 72, 267-275. doi.org/10.1007/s13595-014-0427-8 [
DOI:10.1007/s13595-014-0427-8]
62. Schaller, J., Tischer, A., Struyf, E., Bremer, M., Belmonte, D. U., & Potthast, K. (2015). Fire enhances phosphorus availability in topsoils depending on binding properties. Ecology, 96(6), 1598-1606. [
DOI:10.1890/14-1311.1]
63. Staden, J. V., Brown, N. A., Jäger, A. K., & Johnson, T. A. (2000). Smoke as a germination cue. Plant Species Biology, 15(2), 167-178. [
DOI:10.1046/j.1442-1984.2000.00037.x]
64. Switzer, J. M., Hope, G. D., Grayston, S. J., & Prescott, C. E. (2012). Changes in soil chemical and biological properties after thinning and prescribed fire for ecosystem restoration in a Rocky Mountain Douglas-fir forest. Forest Ecology and Management, 275, 1-13. doi.org/10.1016/j.foreco.2012.02.025 [
DOI:10.1016/j.foreco.2012.02.025]
65. Úbeda, X., & Outeiro, L. R. (2009). Physical and chemical effects of fire on soil. In Fire effects on soils and restoration strategies (pp. 121-148) CRC Press. [
DOI:10.1201/9781439843338-c4]
66. Ulery, A. L., Graham, R. C., Goforth, B. R., & Hubbert, K. R. (2017). Fire effects on cation exchange capacity of California forest and woodland soils. Geoderma, 286, 125-130. [
DOI:10.1016/j.geoderma.2016.10.028]
67. Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19(6), 703-707. [
DOI:10.1016/0038-0717(87)90052-6]
68. Verma, S., & Jayakumar, S. (2012). Impact of forest fire on physical, chemical and biological properties of soil: A review. proceedings of the International Academy of Ecology and Environmental Sciences, 2(3), 168.
69. Wardle, D. A., & Ghani, A. (1995). A critique of the microbial metabolic quotient (qCO2) as a bioindicator of disturbance and ecosystem development. Soil Biology and Biochemistry, 27.(12), 1601-1610. [
DOI:10.1016/0038-0717(95)00093-T]
70. York, A., Bell, T. L., & Weston, C. J. (2012). Fire regimes and soil-based ecological processes: implications for biodiversity. CSIRO Publishing, Collingwood.
71. Zarekar, A., Kazemi Zamani, B., Ghorbani, S., Ashegh Moalla, M., & Jafari, H. R. (2013). Mapping Spatial Distribution of Forest Fire using MCDM and GIS (Case Study: Three Forest Zones in Guilan Province). Iranian Journal of Forest and Poplar Research, 21(2), 218-230. doi.org/10.22092/ijfpr.2013.3854