دوره 12، شماره 1 - ( بهار و تابستان 1403 )                   جلد 12 شماره 1 صفحات 62-50 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Maleki S, Pilehvar B, Mahmoodi M A. (2024). Comparison of Soil Organic Matter in Pure and Mixed Types of Oak in North Zagros (Case Study: Armardeh Baneh Forests). Ecol Iran For. 12(1), 50-62. doi:10.61186/ifej.12.1.50
URL: http://ifej.sanru.ac.ir/article-1-514-fa.html
ملکی سامان، پیله ور بابک، محمودی محمدعلی. مقایسه ماده آلی خاک در تیپ‎های خالص و آمیخته بلوط در زاگرس شمالی (مطالعه موردی: جنگل‎های آرمرده بانه) بوم شناسی جنگل های ایران (علمی- پژوهشی) 1403; 12 (1) :62-50 10.61186/ifej.12.1.50

URL: http://ifej.sanru.ac.ir/article-1-514-fa.html


1- جنگل‌شناسی و اکولوژی جنگل، دانشکده کشاورزی و منابع طبیعی، دانشگاه لرستان، خرم آباد، ایران
2- گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه کردستان، سنندج، ایران
چکیده:   (1140 مشاهده)
چکیده مبسوط
مقدمه و هدف: گردآمدن درختان بهعنوان اصلیترین اجزای اکوسیستم جنگلها دارای پراکنش فضایی خاصی بوده و مشخصه­های رویشگاهی و محیطی نقش بهسزایی را در این پراکنش دارند. گونه­ های درختی با تشکیل تیپ ­های جنگلی از مهم ­ترین عوامل تأثیرگذار بر ویژگی­ های خاک از طریق تولید لاشبرگ بوده و نقش اساسی در کمیت و کیفیت ماده آلی خاک و آزادسازی عناصر غذایی خاک دارند. ماده آلی یکی از بخش­های مهم خاک است که شامل بقایای بافتی گیاهان و جانوران، اجزا تجزیه نشده تا جزئی تجزیه شده آنان و ریزجاندارن مرده میباشد. وجود ماده آلی علاوه بر اینکه نشان دهنده حاصلخیزی و کیفیت خاک است، شـاخص مناسبی برای باروری خاک بهشمار میرود که حاصـل بـرهمکنش فرآینـدهای فیزیکـی، شیمیایی و زیستی است. ماده آلی بـا بهبـود شـرایط خاکدانهسازی، وضـعیت تخلخـل و نفوذپذیری خاک را بهبود میبخشد؛ بنابراین نقش مهمی در پایداری اکوسیستم داشته و بههمین دلیل بررسی جنبههای مختلف آن یکی از ضرورت­ها و پایه­های اصلی در مطالعات کیفیت خاک، چرخه کربن و تغییرات اقلیم است. از آنجایی که اطلاعات بسیار کمی درباره ماده آلی قابل استخراج با آب گرم به عنوان یک شاخص کیفی از ماده آلی خاک در جنگلها وجود دارد و لزوم توجه به شناخت بهتر اثر پوششهای گیاهی مختلف بر خاک موجب پیشبینی دقیقتر اثر گونهها بر بومسازگان و مدیریت بهینه آنها برای مدیران و جنگلشناسان میشود. پژوهش حاضر به بررسی کربن آلی و نیتروژن خاک با روشهای استخراج با آب گرم و سرد بهعنوان شاخصی از تغییرات ماده آلی خاک در دو تیپ مازودار خالص و آمیخته ویول- مازودار در زاگرس شمالی (جنگل‌های آرمرده بانه) میپردازد.
مواد و روشها: تعیین تیپهای جنگلی مختلف با استفاده از نظرات متخصصین جنگلشناسی و همچنین با استفاده از آماربرداری در منطقه مورد مطالعه صورت گرفت. در مطالعه حاضر ویژگیهای جنگلشناسی با 5 قطعه نمونه 400 مترمربعی تصادفی در هر تیپ اندازه‌گیری شد. همچنین خاک زیراشکوب تیپهای مورد مطالعه با استفاده از 10 نمونه ترکیبی از عمق 0-10 سانتی­متری (پس از کنار زدن لایه لاشبرگ) برداشت شد. پس از انتقال نمونه خاکها با کیسههای پلاستیکی به آزمایشگاه، نمونه خاکها از الک دو میلیمتری رد و به دو قسمت تقسیم شدند. یک قسمت از نمونهها بلافاصله به دمای 4 درجه سانتیگراد جهت اندازهگیری زیتوده میکروبی کربن و نیتروژن منتقل شد، قسمتی از نمونهها نیز در هوای آزاد جهت اندازهگیری کربن آلی و نیتروژن کل قرار گرفتند. پس از اندازه‌گیری متغیرهای مورد مطالعه، مقایسه آماری متغیرها در تیپهای جنگلی با استفاده از آزمون t مستقل و همبستگی آنها با ضریب همبستگی پیرسون مورد ارزیابی قرار گرفت.
یافتهها: نتایج نشان داد که تفاوت معنیداری بین میزان کربن آلی خاک و نیتروژن کل خاک بین تیپهای مازودار خالص و ویول- مازودار مشاهده نشد. هر چند که مقادیر کربن آلی و نیتروژن قابل استخراج با گرم و سرد، زیتوده میکروبی کربن و نیتروژن در تیپ ویول- مازودار بیشتر بود؛ اما این تفاوت به غیر از کربن آلی قابل استخراج با آب سرد معنیدار نشد. بین کربن قابل استخراج با آب گرم با زیتوده میکروبی کربن و کربن قابل استخراج با آب سرد همبستگی معنیداری وجود داشت. همچنین بین نیتروژن قابل استخراج با آب گرم با زیتوده میکروبی نیتروژن و کربن همبستگی معنیدار مشاهده شد. در نهایت همبستگی معنیداری بین نیتروژن خاک با زیتوده میکروبی و نیتروژن قابل استخراج با آب سرد وجود داشت، اما ضریب همبستگی کمتر از همبستگی کربن آلی خاک با زیتوده میکروبی کربن و کربن قابل استخراج با آب سرد بود.
نتیجهگیری: در بین درختان و خاک تأثیر متقابل وجود دارد. همانطور که رشد و تولید درختان به خصوصیات خاک ارتباط دارد، از طرف دیگر درختان با لاشبرگ و ویژگیهای منحصربهفرد خود بر خاک زیر اشکوب تأثیر میگذارند، بر اساس نتایج، می‌توان نتیجهگیری کرد که مواد آلی قابل استخراج با آب گرم را میتوان بهعنوان یک شاخص حساس از تغییرات کیفیت ماده آلی در خاکهای جنگلی استفاده کرد.

 
متن کامل [PDF 1414 kb]   (369 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1402/4/2 | پذیرش: 1402/10/26

فهرست منابع
1. Anderson, T., & Domsch, K. (1986). Carbon link between microbial biomass and soil organic matter. Perspectives in microbial ecology, 467-471.
2. Badehian, Z., Mansouri, M. and Soleymani, N. (2021). Quantitative analysis of oak stands in relation to the physiographic traits in le Goran, Kermanshah Province. Journal of Environmental Science and Technology, 23(3), 1-12. [DOI:10.30495/JEST.2018.25775.3470]
3. Baiz Sharif, H., Khaleghpanah, N., Davari, M., Rahimzadeh, M., (2023). Investigating the performance of check dams in granularity of sedimentation in a watershed affected by debris flow (Nanor, Baneh). Journal of Water and Soil Conservation, 30(1), 111-130. [DOI:10.22069/JWSC.2023.21077.3621]
4. Bankó, L., Tóth, G., Marton, C. L., & Hoffmann, S. (2021). Hot-water extractable C and N as indicators for 4p1000 goals in a temperate-climate long-term field experiment: A case study from Hungary. Ecological Indicators, 126, 107364. [DOI:10.1016/j.ecolind.2021.107364]
5. Bayranvand, M. B., Akbarinia, M., Salehi Jouzani, G., Gharechahi, J., & Kooch, Y. (2021). Humus index assessment in relation to forest cover variables and altitude gradient. Ecology of Iranian Forest, 9(18), 169-178. 10.52547/ifej.9.18.169 [DOI:10.52547/ifej.9.18.169]
6. Bronner, H., & Bachler, W. (1979). hydrolysierbare Stickstoff als Hilfsmittel fur die Schatzung des Stickstoffnachlieferungsvermogens von Zuckerrubenboden. Landwirtschaftliche Forschung.
7. Busari, M.A., Bankole, G.O., Adiamo, I.A., Abiodun, R.O. and Ologunde, O.H., (2023). Influence of mulch and poultry manure application on soil temperature, evapotranspiration and water use efficiency of dry season cultivated okra. International Soil and Water Conservation Research, 11(2), 382-392. [DOI:10.1016/j.iswcr.2022.09.003]
8. Chen, C., & Xu, Z. (2005). Soil carbon and nitrogen pools and microbial properties in a 6-year-old slash pine plantation of subtropical Australia: impacts of harvest residue management. Forest Ecology and Management, 206(1-3), 237-247. [DOI:10.1016/j.foreco.2004.11.005]
9. Chodak, M., Khanna, P., & Beese, F. (2003). Hot water extractable C and N in relation to microbiological properties of soils under beech forests. Biology and fertility of soils, 39, 123-130. [DOI:10.1007/s00374-003-0688-0]
10. Corre, M., Schnabel, R., & Shaffer, J. A. (1999). Evaluation of soil organic carbon under forests, cool-season and warm-season grasses in the northeastern US. Soil Biology and Biochemistry, 31(11), 1531-1539. [DOI:10.1016/S0038-0717(99)00074-7]
11. Cremer, M., Kern, N. V., & Prietzel, J. (2016). Soil organic carbon and nitrogen stocks under pure and mixed stands of European beech, Douglas fir and Norway spruce. Forest Ecology and Management, 367, 30-40. [DOI:10.1016/j.foreco.2016.02.020]
12. Devi, N. B., & Yadava, P. (2006). Seasonal dynamics in soil microbial biomass C, N and P in a mixed-oak forest ecosystem of Manipur, North-east India. Applied Soil Ecology, 31(3), 220-227. [DOI:10.1016/j.apsoil.2005.05.005]
13. Edwards, C. A., & Arancon, N. Q. (2022). The Role of Earthworms in Organic matter and nutrient cycles. In Biology and ecology of earthworms, 233-274. [DOI:10.1007/978-0-387-74943-3_8]
14. Foltran, E. C., & Lamersdorf, N. (2023). Tree Species Identity Drives Soil Carbon and Nitrogen Stocks in Nutrient-Poor Sites. bioRxiv, 2023.2005. 2015.540797. [DOI:10.1101/2023.05.15.540797]
15. Gagnon, B., & Ziadi, N. (2022). Soil carbohydrate and aggregation as affected by carbohydrate composition of paper mill biosolids. Canadian Journal of Soil Science, 102(2), 371-384. https://doi.org/10.1139/cjss-2021-0136 [DOI:10.1139/CJSS-2021-0136]
16. Ge, T., Nie, S. a., Wu, J., Shen, J., Xiao, H. a., Tong, C., Huang, D., Hong, Y., & Iwasaki, K. (2011). Chemical properties, microbial biomass, and activity differ between soils of organic and conventional horticultural systems under greenhouse and open field management: a case study. Journal of Soils and Sediments, 11, 25-36. 10.1007/S11368-010-0293-4 [DOI:10.1007/s11368-010-0293-4]
17. Ghani, A., Dexter, M., & Perrott, K. (2003). Hot-water extractable carbon in soils: a sensitive measurement for determining impacts of fertilisation, grazing and cultivation. Soil Biology and Biochemistry, 35(9), 1231-1243. [DOI:10.1016/S0038-0717(03)00186-X]
18. Guo, X., Meng, M., Zhang, J., & Chen, H. Y. (2016). Vegetation change impacts on soil organic carbon chemical composition in subtropical forests. Scientific reports, 6(1), 29607. [DOI:10.1038/srep29607]
19. Haghverdi, K., & Kooch, Y. (2019). Effects of diversity of tree species on nutrient cycling and soil-related processes. Catena, 178, 335-344. [DOI:10.1016/j.catena.2019.03.041]
20. Jafari, S.H., Pilehvar, B., Abrari, V.K. and Waez, M.S.M., (2021). Changes in carbon sequestration and some edaphic traits in forest types of central Zagros (Case study: The forests of Lorestan province). 9(17), 142-151. https://doi.org/ 10.52547/ifej.9.17.142 [DOI:10.52547/ifej.9.17.142]
21. Jiang, P., Zheng, X., He, S., Xiao, L., & Liu, M. (2023). Distribution Characteristics of Labile Soil Organic Carbon in Longmenshan Seismic Fault Zone, Sichuan Province. Eurasian Soil Science, 1-10. [DOI:10.1134/S1064229323600045]
22. Joshi, R. K., & Garkoti, S. C. (2021). Influence of Nepalese alder on soil physico-chemical properties and fine root dynamics in white oak forests in the central Himalaya, India. Catena, 200, 105140. [DOI:10.1016/j.catena.2020.105140]
23. Koković, N., Jačimović, G., Sikirić, B., Čirić, V., Ugrenović, V., Zhapparova, A., & Saljnikov, E. (2022). Changes in Eutric Cambisol due to long-term mineral fertilisation: A case study in Serbia. Italian Journal of Agronomy, 17(2). [DOI:10.4081/ija.2022.2029]
24. Kooch, Y., Tarighat, F. S., & Haghverdi, K. (2022). Effect of Forest and Non-Forest Land Covers on Soil Organic Matter, Fulvic and Humic Acids. Ecology of Iranian Forest, 39-46. [DOI:10.52547/ifej.10.19.39]
25. Landgraf, D., Leinweber, P., & Makeschin, F. (2006). Cold and hot water-extractable organic matter as indicators of litter decomposition in forest soils. Journal of Plant Nutrition and Soil Science, 169(1), 76-82. [DOI:10.1002/jpln.200521711]
26. Maleki, S., Pilehvar, B., & Mahmoodi, M. A. (2022). Daily and seasonal changes of soil respiration under the influence of temperature and moisture factors in different types of oak. Journal of Wood and Forest Science and Technology, 29(4), 59-73. 10.22069/JWFST.2023.20825.1993
27. Maleki, S., Pilehvar, B. and Mahmoodi, M.A., (2023). Assessment of soil quality in different types of forests in North Zagros (Case study: Armardeh Baneh Forests). Journal of Natural Environment. [DOI:10.22059/JNE.2023.356996.2540]
28. Maleki, S., Pilehvar, B., & Mahmoodi, M. A. (2023). Assessing the vegetation diversity of different oak types in relation with soil characteristics in the forests of north Zagros (Case study: Armardeh Baneh). Journal of Natural Environment. [DOI:10.22059/JNE.2023.356996.2540]
29. Mohammadi Samani, K., Jalilvand, H., Salehi, A., Shahabi, M. and Goleij, A., (2006). Relationship between some soil chemical characteristics and few tree types of Zagros forests: case study of Marivan. Iranian Journal of Forest and Poplar Research, 14(2), 158-148.
30. Montagnini, F. (2000). Accumulation in above-ground biomass and soil storage of mineral nutrients in pure and mixed plantations in a humid tropical lowland. Forest Ecology and Management, 134(1-3), 257-270. [DOI:10.1016/S0378-1127(99)00262-5]
31. Nelson, D. W., & Sommers, L. E. (1980). Total nitrogen analysis of soil and plant tissues. Journal of the Association of Official Analytical Chemists, 63(4), 770-778. [DOI:10.1093/jaoac/63.4.770]
32. Padalia, K., Bargali, S. S., Bargali, K., & Manral, V. (2022). Soil microbial biomass phosphorus under different land use systems of Central Himalaya. Tropical Ecology, 1-19. [DOI:10.1007/s42965-021-00184-z]
33. Peikun, J. (2005). Soil active carbon pool under different types of vegetation. Scientia Silvae Sinicae.
34. Plaza-Álvarez, P., Lucas-Borja, M., Sagra, J., Zema, D., González-Romero, J., Moya, D., & De las Heras, J. (2019). Changes in soil hydraulic conductivity after prescribed fires in Mediterranean pine forests. Journal of environmental management, 232, 1021-1027. [DOI:10.1016/j.jenvman.2018.12.012]
35. Sheldrick, B., Wang, C., & Carter, M. (1993). Soil sampling and methods of analysis. Particle Size Distribution. Canadian Society of Soil Science, Lewis Publishers, Boca Raton, Florida, USA. 499-511.
36. Silong, W., Liping, L., Xiaojun, Y., & Hong, G. (2000). Changes of nutritional nitrogen and phosphrous during ecological restoration of degraded Chinese fir plantation soil. Chin J Appl Ecol, 11, 185-190.
37. Singh, K., Singh, B., & Singh, R. (2012). Changes in physico-chemical, microbial and enzymatic activities during restoration of degraded sodic land: Ecological suitability of mixed forest over monoculture plantation. Catena, 96, 57-67. [DOI:10.1016/j.catena.2012.04.007]
38. Sparling, G., Vojvodić-Vuković, M., & Schipper, L. (1998). Hot-water-soluble C as a simple measure of labile soil organic matter: the relationship with microbial biomass C. Soil Biology and Biochemistry, 30(10-11), 1469-1472. [DOI:10.1016/S0038-0717(98)00040-6]
39. Valipour, A., Plieninger, T., Shakeri, Z., Ghazanfari, H., Namiranian, M. and Lexer, M.J., (2014). Traditional silvopastoral management and its effects on forest stand structure in northern Zagros, Iran. Forest ecology and management, 327, 221-230. [DOI:10.1016/j.foreco.2014.05.004]
40. Valipour, A., Namiranian, M., Ghazanfari, H., Heshmatol Vaezin, S.M., Lexer, M.J. and Plieninger, T., (2013). Relationships between forest structure and tree's dimensions with physiographical factors in Armardeh forests (Northern Zagros). Iranian journal of Forest and Poplar research, 21(1), 30-47. [DOI:10.22092/IJFPR.2013.3336]
41. Walkley, A. (1947). A critical examination of a rapid method for determining organic carbon in soils effect of variations in digestion conditions and of inorganic soil constituents. Soil Science, 63(4), 251-264. [DOI:10.1097/00010694-194704000-00001]
42. Wang, Q., & Wang, S. (2007). Soil organic matter under different forest types in Southern China. Geoderma, 142(3-4), 349-356. [DOI:10.1016/j.geoderma.2007.09.006]
43. Wang, Q., Wang, S., Gao, H., & Yu, X. (2005). Dynamics of soil active organic matter in Chinese fir plantations. Ying Yong Sheng tai xue bao= The Journal of Applied Ecology, 16(7), 1270-1274
44. Witt, C., Gaunt, J. L., Galicia, C. C., Ottow, J. C., & Neue, H.-U. (2000). A rapid chloroform-fumigation extraction method for measuring soil microbial biomass carbon and nitrogen in flooded rice soils. Biology and fertility of soils, 30, 510-519. [DOI:10.1007/s003740050030]
45. Woś, B., Pająk, M., & Pietrzykowski, M. (2022). Soil organic carbon pools and associated soil chemical properties under two pine species (Pinus sylvestris L. and Pinus nigra Arn.) introduced on reclaimed sandy soils. Forests, 13(2), 328. [DOI:10.3390/f13020328]
46. Xu, Q., & Xu, J. (2003). Changes in soil carbon pools induced by substitution of plantation for native forest. Pedosphere, 13(3), 271-278.
47. Yang, R. M., Huang, L. M., Zhang, X., Zhu, C. M., & Xu, L. (2023). Mapping the distribution, trends, and drivers of soil organic carbon in China from 1982 to 2019. Geoderma, 429, 116232. [DOI:10.1016/j.geoderma.2022.116232]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به بوم‏شناسی جنگل‏های ایران می‌باشد.

طراحی و برنامه نویسی: یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Ecology of Iranian Forest

Designed & Developed by: Yektaweb