1. Ahadi, Z., Alavi, S.J. & Hosseini, S.M. (2017). Beech forest site productivity mapping using ordinary kriging and IDW (Case study: research forest of Tarbiat Modares University). Forest and Wood Products, 70(1), 93-102 (In Persian).
2. Akhavan, R. & Kleinn, C. (2009). On the potential of kriging for estimation and mapping of forest plantation stock (Case study: Beneshki plantation). Iranian Journal of Forest and Poplar Research, 17(2), 303-318 (In Persian).
3. Akhavan, R., Mahdavi, A. & Kianfar, M. (2018). Analysis of the decline status of Zagrosian oak forests using spatial statistics (Case study: Zarab forests of Ilam). Iranian Journal of Forest and Range Protection Research, 16(2), 129-145.
4. Akhavan, R., Kia-Deliri, H. Etemad, V. Hassani, M. & Mirakhorlou, K.H. (2014). Geostatistically estimation and mapping of forest stock in a natural unmanaged forest in the Caspian region of Iran (Case study: Keyroud forest, Nowshahr). Iranian Journal of Forest and Poplar Research, 22(2), 188-203 (In Persian).
5. Akhavan, R., Zobeiri, M. ZahediAmiri, G.H. Namiranian, M. & Mandallaz, D. (2006). Spatial structure and estimation of forest growing stock using geostatistics in the Caspian region of Iran. Iranian Journal of Natural Resources, 59(1), 89-102 (In Persian).
6. Bangroo, S.A., Najar, G.R. Achin, E. & Truong, P.N. (2020). Application of predictor variables in spatial quantification of soil organic carbon and total nitrogen using regression kriging in the North Kashmir forest Himalayas. Catena, 193, 104632. [
DOI:10.1016/j.catena.2020.104632]
7. Bessad, A., Bilger, I. & Korboulewsky, N. (2021). Assessing Biomass Removal and Woody Debris in Whole-Tree Harvesting System: Are the Recommended Levels of Residues Ensured? Forests, 12(6), 1-15. [
DOI:10.3390/f12060807]
8. Campbell, J.L., Harmon, M.E. & Mitchell, S.R. (2012). Can fuel-reduction treatments really increase forest carbon storage in the western US by reducing future fire emissions? Frontiers in Ecology and the Environment, 10, 83-90. [
DOI:10.1890/110057]
9. Daniel, J., Lennart, N. Thierry, B. & Arve. E. (2010). Plants as bioindicator for temperature interpolation purposes: Analyzing spatial correlation between botany based index of thermophily and integrated temperature characteristics. Ecological Indicator, 10, 990-998. [
DOI:10.1016/j.ecolind.2010.02.007]
10. Delcourt, C.J.F. & Veraverbeke, S. (2022). Allometric equations and wood density parameters for estimating aboveground and woody debris biomass in Cajander larch (Larix cajanderi) forests of northeast Siberia. Biogeosciences, 19, 4499-4520. [
DOI:10.5194/bg-19-4499-2022]
11. Eldrandaly, K.A. & Abu-Zaid, M.S. (2011). Comparison of six GIS-based spatial
12. interpolation methods for estimating air temperature in Western Saudi Arabia.
13. Journal of Environmental Informatics, 18(1), 38-45.
14. Eräjää, S., Halme, P. Kotiaho, J.S. Markkanen, A. & Toivanen, T. (2010). The volume and composition of dead wood on traditional and forest fuel harvested clear- cuts. Silva Fennica, 44, 203-211. [
DOI:10.14214/sf.150]
15. Farooq, I., Bangroo, S. Bashir, O. Islam Shah, T. Malik, A.A. Iqbal, A.M. Nazir, N. & Biswas. A. (2022). Comparison of Random Forest and Kriging Models for Soil Organic Carbon Mapping in the Himalayan Region of Kashmir. Land, 11, 2180. [
DOI:10.3390/land11122180]
16. Freeman, E.A. & Moisen. G.G. (2007). Evaluating kriging as a tool to improve moderate resolution maps of forest biomass. Environmental Monitoring and Assessment, 128, 395-410. [
DOI:10.1007/s10661-006-9322-6]
17. Harmon, M.E., Woodall, C.W. Fasth, B. & Sexton. J. (2007). Woody Detritus Density and Density Reduction Factors for Tree Species in the United States: A Synthesis. Northern Research Station, 84, 29. [
DOI:10.2737/NRS-GTR-29]
18. Hosseinpour, A., Fallah, A. Niknejad, M. Hejazian, M. & Kalbi. S. (2023). Investigating of Kriging Geostatistic Method Capability for Forest Stand Volume Zoning (Case Study: Haftkhal Area). Ecology of Iranian Forests, 10(20), 120-128 (In Persian). [
DOI:10.52547/ifej.10.20.120]
19. IBM Corp. Released. (2019). IBM SPSS Statistics for Windows, Version 23.0. Armonk, NY: IBM Corp.
20. IUFRO. (2004). Improvement and Silviculture of Beech, in: Proceedings from the 7th International Beech Symposium, Research Institute of Forests and Rangelands (RIFR), Tehran, Iran.
21. Kambhammettu, B.V.N.P., Allena, P. & King, J.P. (2011). Application and evaluation of universal kriging for optimal contouring of groundwater levels. Journal of Earth System Science, 120(3), 413-422. [
DOI:10.1007/s12040-011-0075-4]
22. Korboulewsky, N., Bilger, I. & Bessad, A. (2021). How to Evaluate Downed Fine Woody Debris ncluding Logging Residues? Forests, 12(7), 1-20. [
DOI:10.3390/f12070881]
23. López-Senespleda, E., Calama, R. & Ruiz-Peinado, R. (2021). Estimating forest floor carbon stocks in woodland formations in Spain. Science of the Total Environment, 788, 147734. [
DOI:10.1016/j.scitotenv.2021.147734]
24. Ma, J., Li, X. Jia, B. Liu, X. Li, T. & Zhang, W. (2021). Spatial variation analysis of urban forest vegetation carbon storage and sequestration in built-up areas of Beijing based on i-Tree Eco and Kriging. Urban Forestry & Urban Greening, 66, 127413. [
DOI:10.1016/j.ufug.2021.127413]
25. Mahdavi, A., Aziz, J. & Akhavan, R. (2016). Mapping tree density of Zagros oak forests using Kriging and Worldview-2 satellite images from Google Earth database. Journal of Wood & Forest Science and Technology, 23(4), 87-110 (In Persian).
26. Malmsheimer, R.W., Heffernan, P. Brink, S. Crandall, D. Deneke, F. Galik, C. Gee, E. Helms, J.A. McClure, N. Mortimer, M. Ruddell, S. Smith, M. & Stewart, J. (2008). Forest management solutions for mitigating climate change in the United States. Journal of Forestry, 106, 115-171. [
DOI:10.1093/jof/106.3.115]
27. McKinley, D.C., Ryan, M.G. Birdsey, R.A. Giardina, C.P. Harmon, M.E. Heath, L.S. Houghton, R.A. Jackson, R.B. Morrison, J.F. Murray, B.C. Pataki, D.E. & Skog, K.E. (2011). A synthesis of current knowledge on forests and carbon storage in the United States. Ecological Applications, 21, 1902-1924. [
DOI:10.1890/10-0697.1]
28. Munyati, C. & Sinthumule, N.I. (2021). Comparative suitability of ordinary kriging and Inverse Distance Weighted interpolation for indicating intactness gradients on threatened savannah woodland and forest stands. Environmental and Sustainability Indicators, 12, 100151. [
DOI:10.1016/j.indic.2021.100151]
29. Nadiri, A., Shakoor, S. Asghari Moghadam, A. & Vadiati, M. (2014). Assessment of various interpolations to estimate nitrate pollution in the underground water resources. Hydro geomorphology, 1, 75-92 (In Persian).
30. Nejadkoorki, F. & Nicholson, K. (2012). Integrating passive sampling and interpolation
31. techniques to assess the spatio-temporal variability of urban pollutants using limited
32. data sets. Environmental Engineering and Management Journal, 11(9), 1649-1655.
33. Norden, B., Ryberg, M. Gotmark, F. & Olausson, B. (2004). Relative importance of coarse and fine woody debris for the diversity of wood-inhabiting fungi in temperate broadleaf forests. Biological Conservation, 117, 1-10. [
DOI:10.1016/S0006-3207(03)00235-0]
34. Sefidi, K., M.R. Marviemohajer & V. Etemad. (2014). Coarse and fine woody debris accumulation in mixed beech stands, Case study Gorazbon forests. Journal of Forest Sustainable development, 1(2), 137-149 (In Persian).
35. Robertson, G.P. (2000). Gs+: geostatistics for the environmental sciences gamma design software. Michigan: Plainwell.
36. Taghipour, K., Heydari, M. Kooch, Y. Fathizad, H. Heung, B. & Taghizadeh-Mehrhjardi, R. (2022). Assessing changes in soil quality between protected and degraded forests using digital soil mapping for semiarid oak forests, Iran. Catena, 213, 106204. [
DOI:10.1016/j.catena.2022.106204]
37. Tangwa, E., Wiktor, T. Wilem. P. & Yisa Ginath. Y. (2021). Predicting plant species richness in forested landslide zones using geostatistical methods. Ecological Indicators, 132, 108297. [
DOI:10.1016/j.ecolind.2021.108297]
38. Van Wagner, C.E. 1968. The line intersect method in forest fuel sampling. Forest Science, 14(1), 20-26.
39. Woodall, C. & Williams, M.S. (2005). Sampling Protocol Estimation, and Analysis Procedures for the Down Woody Materials Indicator of the FIA Progam. North Central Research Station Forest Service U.S. Department of Agriculture, 47 pp. [
DOI:10.2737/NC-GTR-256]
40. Woodall, C.W. & Liknes, G.C. (2008). Relationships between forest fine and coarse woody debris carbon stocks across latitudinal gradients in the United States as an indicator of climate change effects. Ecological Indicators, 8(5), 686- 690. [
DOI:10.1016/j.ecolind.2007.11.002]
41. Woodall, C.W., Walters, B.F. Oswalt, S.N. Domke, G.M. Toney, C. & Gray, A.N. (2013). Biomass and carbon attributes of downed woody materials in forests of the United States. Forest Ecology and Management, 305, 48-59. [
DOI:10.1016/j.foreco.2013.05.030]
42. Wu, J., Norvell, W.A. & Welch, R.M. (2006). Kriging on highly skewed data for DTPA extractable soil Zn with auxiliary information for pH and organic carbon. Geoderma, 134, 187-199. [
DOI:10.1016/j.geoderma.2005.11.002]
43. Zobeiri, M. (2002). Forest Biometry. Tehran University Press. 411 pp.