1. Askarizadeh, D., Arzani, H., Jaffari, M., Bazrafshan, J., & Prentice., I.C. (2018). Surveying of the past, present and future of vegetation changes in the central Alborz ranges in relation to climate change. RS & GIS for Natural Resources, 9(3), 1-18.
2. Balapour, S., & Kazemi, S.M. (2012). Effects of climate variables (temperature and precipitation) on annual growth of Zelkova carpinifolia. Iranian Journal of Wood and Paper Science Research, 27(1), 69-80 (In Persian).
3. Bayat, M., Burkhart, H., Namiranian, M., Hamidi, S.K., Heidari, S., & Hassani, M. (2021). Assessing Biotic and Abiotic Effects on Biodiversity Index Using Machine Learning. Forests, 12, 461. [
DOI:10.3390/f12040461]
4. Chu, J.T., Xia, J., Xu, C. Y., & Singh, V. P. (2010). Statistical downscaling of daily mean temperature, pan evaporation and precipitation for climate change scenarios In Haihe River, China. Theoretical and Applied Climatology, 99, 149-161. [
DOI:10.1007/s00704-009-0129-6]
5. Etzold, S., Zieminska, K., Rohner, B., Bottero, A., Bose, A. K., Ruehr, N. K., Zingg, A., & Rigling, A. (2019). One century of forest monitoring data in Switzerland reveals species- and site-specific trends of climate-induced tree mortality. Front. Plant Science, 10, 307. [
DOI:10.3389/fpls.2019.00307]
6. Fan, C., Tan, L., Zhang, P., Liang, J., Zhang, C., Wang, J., Zhao, X. & Gadow, K. (2017). Determinants of mortality in a mixed broad-leaved Korean pine forest in northeastern China. European Journal Forest Research, 136, 457-469. [
DOI:10.1007/s10342-017-1045-4]
7. Fiseha, B. M., Melesse, A. M., Romano, E., Volpi, E., & Fiori, A. (2012). Statistical Downscaling of Precipitation and Temperature for the Upper Tiber Basin in Central Italy. International Journal of Water Sciences, 1(17), 1-14.
8. Froese, R. E. & Robinson, A. P. (2007). A validation and evaluation of the Prognosis individual-tree basal area increment model. Can. J. For. Res. 37, 1438-1449. [
DOI:10.1139/X07-002]
9. Juneja, A., Ceballo, R. M., & Murthy, G. S. (2013). Effects of Environmental Factors and Nutrient Availability on the Biochemical Composition of Algae for Biofuels Production: A Review. Energies, 6(9), 4607-4638.
https://doi.org/10.3390/en6094607 [
DOI:10.3390/en6094607.]
10. Hai, F. Z., Xue, M. S., Zhi, Y. Y., Peng, X., Yan, X. & Hua, T. (2011). August temperature variability in the southeastern Tibetan Plateau since A.D.1385 inferred from tree rings. PALAEO, 5, 703.
11. Hahn, J.T. (1984). Tree Volume and Biomass Equations for the Lake States. Research Paper NC-250, USDA Forest Service, North Central Forest Experiment Station, St. Paul, MN. [
DOI:10.2737/NC-RP-250]
12. Hamidi, S.K., Fallah, A., Bayat, M., & Hosseini yekani, S. A. (2017). Determining the Forest Volume Growth using Permanent Sample Plots (Case Study: Farim Forest, Jojadeh District). Ecology of Iranian Forest, 4(8),1-8 (In Persian).
13. Hamidi, K., Fallah, A., Bayat, M. & Hosseini yekani, S. A. (2019). Investigating the diameter and height models of beech trees in uneven age forest of northern Iran (Case study: Forest Farim), Iranian Forest Ecology, 3(11), 373-386 (In Persian).
14. Hamidi, K., Zenner, E., Bayat M., & Fallah, A. (2021). Analysis of Plot-level Volume Increment Models Developed from Machine Learning Methods Applied to an Uneven-aged Mixed Forest. Annals of forest science. 78, 4 [
DOI:10.1007/s13595-020-01011-6]
15. Hamidi, S. K., Weiskittel, A., Bayat, M., & Fallah. A. (2021). Development of individual tree growth and yield model across multiple contrasting species using nonparametric and parametric methods in the Hyrcanian forests of northern Iran. European Journal of Forest Research, https://doi.org/ 10.30466/JFRD.2020.120877
https://doi.org/10.1007/s10342-020-01340-1 [
DOI:10.30466/JFRD.2020.120877]
16. Hamidi, S.K., Fallah, A., Bayat, M., & de Luis, M. (2021). The effects of climate variables (temperature and precipitation) on growth characteristics of trees (case study: Farim forest). Journal of Forest Research and development, 6(4), 593-607 (In Persian) [
DOI:10.1007/s10342-020-01340-1]
17. Hamidi, S. K., de Luis, M., Bourque, C. P. A., Bayat, M., & Serrano-Notivoli, R. (2023). Projected biodiversity in the Hyrcanian Mountain Forest of Iran: An investigation based on two climate scenarios. Biodiversity and Conservation, 32(12), 3791-3808. [
DOI:10.1007/s10531-022-02470-1]
18. IPCC. (2007). The Physical Science Basis. Contribution of I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 p.
19. IPCC. (2019). Summary for policymakers. In: Abe-Ouchi, A., Gupta, K., Pereira, J. (Eds.), IPCC Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities.
20. Karamzadeh, S., Pourbabaii, H., & Torkman, J. (2012). Dendroclimatology of Quercus castaneifolia (C.A.Mey) in Saravan forests of Guilan. Iranian Journal of Forest and Poplar Research, 19(1), 15-26 (In Persian).
21. Liang, E., Xuemei, S., & Ningsheng, Q. (2007). Tree - ring based summer temperature reconstruction for the source region of the Yangtze River on the Tibetan Plateau. Global and Planetary Change, (16), 313-320. [
DOI:10.1016/j.gloplacha.2007.10.008]
22. Liu, J., Yang, B., & Qin, C. (2011). Tree-ring based annual precipitation reconstruction since AD 1480 in south central Tibet. Quaternary International, 236(1-2), 75-81. [
DOI:10.1016/j.quaint.2010.03.020]
23. Mathys, A.S., Brang, P., Stillhard, J., Bugmann, H., & Hobi, M. L. (2021). Long-term tree species population dynamics in Swiss forest reserves influenced by forest structure and climate. Forest Ecology and Management, 481, 118666. [
DOI:10.1016/j.foreco.2020.118666]
24. Mathys, A.S., Coops, N.C., Simard, S.W., Waring R.H., & Aitken, S.N. (2018). Diverging distribution of seedlings and mature trees reflects recent climate change in British Columbia. Ecol. Model, 384, 145-153. [
DOI:10.1016/j.ecolmodel.2018.06.008]
25. Pokharel, B. (2008). A critical evaluation of diameter increment modelling in the Great Lakes region. Ph.D. Dissertation, School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 148 pp.
26. Pokharel, B., & Froese. R.E. (2009). Representing site productivity in the basal area increment model for FVS-Ontario. Forest Ecology and Management, 258, 666-675. [
DOI:10.1016/j.foreco.2009.04.040]
27. Portahmasi, K., Parsapazhoh, D., Mohajer, M., & Sodabeh, A. (2009). Evaluation of Radial Growth of Juniperus Polycarpos C.Koch in Three Areas of Iran Using Tree Chronology, Journal of Forest and Poplar Researches Iran, 16(2), 327-342 (In Persian).
28. Richard, G. N. & Stavins. R. N. (2006). Climate changes and forest sinks: Factors affecting the costs of carbon sequestration, Journal of Environmental Economics and Management, 40, 122-151.
29. Sharma, M., & Parton, J. (2007). Height-diameter equations for boreal tree species in Ontario using a mixed-effects modeling approach. For. Ecol. Manage, 249, 187-198. [
DOI:10.1016/j.foreco.2007.05.006]
30. Tabari, M., Espahbodi, K., & Pourmajidian. M. R. (2007). Composition and structure of a Fagus orientalis-dominated forest managed with shelter wood aim: a case study in the Caspian forests, northern Iran. Caspian Journal of Environmental Sciences, 5, 35-40 (In Persian).
31. Vahedi, A. A., Fallah, A., Akhavan, R., Nazariani, N., Khatibnia, E., & Hamidi, S. K. (2024). Spatial Analyses for Fine Woody Debris Volume Stock in the Hyrcanian Research Forest of Kheyrood-Kenar. Ecology of Iranian Forest, 12(1), 73-87 (In Persian). doi:10.61186/ifej.12.1.73 [
DOI:10.61186/ifej.12.1.73]
32. Vargas-Larreta, B., Castedo-Dorado, F., Alvarez-Gonzalez, J.G., Barrio-Anta, M., & Cruz-Cobos, F. (2009). A generalized height-diameter model with random coefficients for uneven-aged stands in El Salto, Durango (Mexico). Forestry, 82, 445-462. [
DOI:10.1093/forestry/cpp016]
33. Wykoff, W. R. (1986). Supplement to the user's guide for the stand Prognosis model: Version 5.0. General Technical Report INT-208, USDA Forest Service, Intermountain Research Station, Ogden, UT 36 pp. [
DOI:10.2737/INT-GTR-208]
34. Wykoff, W. R. (1990). A basal area increment model for individual conifers in the northern Rocky Mountains. For. Sci, 36, 1077-1104. [
DOI:10.1093/forestscience/36.4.1077]
35. Yagi, A., & Primicerio, M. (2014). A modified forest kinematic model. Vietnam Journal of Mathematical Applications, 12, 107- 118.
36. Yang, R. C., Monserud, R. A. and Huang, S. (2004). An evaluation of diagnostic tests and their roles in validating forest biometric models. Canadian Journal of Forest Research, 34, 619-629. [
DOI:10.1139/x03-230]