Volume 5, Issue 9 (6-2017)                   ifej 2017, 5(9): 47-55 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Seyed Mousavi Z, mohammadi J, shataee S. The Evaluation of Potential Airborne Laser Scanner Data in Estimating of Individual Canopy Area and Tree Heights in Part of Educational and Research Shast-Kalate Forests - Gorgan . ifej 2017; 5 (9) :47-55
URL: http://ifej.sanru.ac.ir/article-1-201-en.html
Gorgan University of Agricultural Sciences and Natural Resources,
Abstract:   (2813 Views)
The present study eas aimed to evaluate the potential of ALS data in estimation of individual canopy cover area and tree heights for the part of Shast Kalate of Gorgan. In this study 117 tree that located in dominant forest story and without overlay with adjacent trees, were selected. Center coordinates of sample trees were determined using DGPS system. Individual canopy area and tree heights were extracted using in Fusion software. UltraCam-D images were used to separating the canopy border of a single tree and produce a tree polygon. The result of linear regression between individual canopy area and tree heights in the field measurement and ALS data were yielded coefficients of determination , (0.974 and 0.997); RMSE% (6.13 and 7.24) respectively. Mean differences between individual canopy area and tree heights of field measurement and ALS data were achieved 0.72 m and 12.8 . Therefore the results of this study showed that ALS data are capable of estimating of individual canopy and tree heights with high accuracy.

Full-Text [PDF 1863 kb]   (2412 Downloads)    
Type of Study: Research | Subject: سنجش از دور
Received: 2017/11/20 | Accepted: 2018/04/17 | Published: 2018/06/19

1. Ahmed, R.U. 2012. Accuracy of Biomass and Structure Estimates from Radar and (LiDAR), a dissertation of doctor of philosophy, University of Massachusetts, 231pp.
2. Andersen, H.E., S.E. Reutebuch, and R.J. McGaughey. 2006. A rigorous assessment of tree height measurements obtained using airborne (LiDAR) and conventional field methods. Canadian Journal of Remote Sensing, 32(5): 355-366. [DOI:10.5589/m06-030]
3. Edson, C. and M.G. Wing. 2011. Airborne Light Detection and Ranging (LiDAR) for Individual Tree Stem Location, Height and Biomass Measurements. Remote Sensing, 3(34): 2494-2528. [DOI:10.3390/rs3112494]
4. Chen, Q., D. Baldocchi, P. Gong and M. Kelly. 2006. Isolating individual trees in savanna woodland using small footprint (LiDAR) data. Photogrammetric Engineering & Remote Sensing, 72(8): 923-932. [DOI:10.14358/PERS.72.8.923]
5. Anonymous. 2009. Forest Science Faculty, Gorgan University of Agricultural Sciences and Natural Recourses Gorgan, 478 pp (In Persian).
6. Heurich, M. and H. Weinacker. 2004. Automated tree detection and measurement in temperate forest of central Europe using laser scanning data. In: Proceedings of the ISPRS working group VIII/2, Laser-Scanners for Forest and Landscape Assessment. Freiburg, Germany 3- 6, 198-203.
7. Heurich, M. and F. Thoma. 2008. Estimation of forestry stand parameters using laser scanning data in temperate, structurally rich natural European beech (Fagussylvatica) and Norway spruce (Piceaabies) forests. Forestry, 81(5): 645-661. [DOI:10.1093/forestry/cpn038]
8. Hudak, A., N.L. Crookston, J.S. Evans, D.E. Hall, M.J. Falwski, A.M. Smith and P. Gessier. 2006. Regression modeling and mapping of coniferous forest basal area and tree density from direct-return LiDAR and multispectral satellite data. Canadian Journal of Remote sensing, 32: 126-138. [DOI:10.5589/m06-007]
9. Jung, S.E., D.A. Kwak, T. Park, W.K. Lee and S. Yoo. 2011. Estimating crown variables of individual trees using airborne and terrestrial laser scanners. Remote Sensing, 3(11): 2346-2363. [DOI:10.3390/rs3112346]
10. Khorrami, R.A., A.A. Darvishsefat, M. Tabari Kochaksaraei, and Sh. Shataee Jouybari. 2014. Potential of LiDAR data for estimation of individual tree height of Acer velutinum and Carpinus betulus. Iranian Journal of Forest, 6(2): 127-140 (In Persian).
11. Koch, B., U. Heyder and H. Weinacker. 2006. Detection of individual tree crowns in airborne LiDAR data. Photogrammetric Engineering & Remote Sensing, 72(4): 357-363. [DOI:10.14358/PERS.72.4.357]
12. Korpela, I., B. Dahlin, H. Schäfer, E. Bruun, F. Haapaniemi, J. Honkasalo, S. Ilvesniemi, V. Kuutti, M. Linkosalmi, J. Mustonen and M. Salo. 2007. Single-tree forest inventory using LiDAR and aerial images for 3D treetop positioning, species recognition, height and crown width estimation. In Proceedings of ISPRS workshop on laser scanning, pp: 227-233.
13. Kraus, K., and N. Pfeifer, 1998. Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS Journal Photogrammetry Remote Sensing, 53: 193-203. [DOI:10.1016/S0924-2716(98)00009-4]
14. Kwak, D.A., W.K. Lee, J.H. Lee, G.S. Biging and P. Gong. 2007. Detection of individual trees and estimation of tree height using LiDAR data. Journal of Forest Research, 12(6): 425-434. [DOI:10.1007/s10310-007-0041-9]
15. Leiterer, R., R. Furrer, M.E. Schaepman and F. Morsdorf. 2015. Forest canopy-structure characterization: A data-driven approach. Forest Ecology and Management, 358: 48-61. [DOI:10.1016/j.foreco.2015.09.003]
16. Mohammadi, J., S. Shataee, M. Namiranian and E. Næsset. 2017. Modeling biophysical properties of broad-leaved stands in the hyrcanian forests of Iran using fused airborne laser scanner data and UltraCam-D images. International Journal of Applied Earth Observation and Geoinformation, 61: 32-45. [DOI:10.1016/j.jag.2017.05.003]
17. Mongus, D. and B. Zalik. 2012. Parameter-free ground filtering of LiDAR data for automatic DTM generation. ISPRS Journal of Photogrammetry and Remote Sensing, 67: 1-12. [DOI:10.1016/j.isprsjprs.2011.10.002]
18. Næsset, E. 2011. Estimating above-ground biomass in young forests with airborne laser scanning. International Journal of Remote Sensing, 32(2): 473-501. [DOI:10.1080/01431160903474970]
19. Popescu, S.C., R.H. Wynne and R.H. Nelson. 2003. Measuring individual tree crown diameter with LiDAR and assessing its influence on estimating forest volume and biomass, Canadian Journal of Remote Sensing, 29(5): 564-577. [DOI:10.5589/m03-027]
20. Shrestha, R. and R.H. Wynne, 2012. Estimating biophysical parameters of individual trees in an urban environment using small footprint discrete-return imaging LiDAR, Remote Sensing, 4: 484-508. [DOI:10.3390/rs4020484]
21. Silva, C.A., A.T. Hudak, L.A. Vierling, E.L. Loudermilk, J.J. O'Brien, J.K. Hiers, S.B. Jack, C. Gonzalez-Benecke, H. Lee, M.J. Falkowski and A. Khosravipour. 2016. Imputation of individual longleaf pine (Pinus palustris Mill.) tree attributes from field and LiDAR data, Canadian Journal of Remote Sensing, 42(5): 554-573. [DOI:10.1080/07038992.2016.1196582]
22. Suárez, J.C., C. Ontiveros, S. Smith and S. Snape. 2005. Use of airborne LiDAR and aerial photography in the estimation of individual tree heights in forestry. Computers & Geosciences, 31(2): 253-262. [DOI:10.1016/j.cageo.2004.09.015]
23. Tonolli, S., M. Dalponte, M. Neteler, M. Rodeghiero, L. Vescovo and D. Gianelle. 2011. Fusion of airborne LiDAR and satellite multispectral data for the estimation of timber volume in the Southern Alps. Remote Sensing of Environment, 115: 2486-2498. [DOI:10.1016/j.rse.2011.05.009]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Ecology of Iranian Forest

Designed & Developed by : Yektaweb