دوره 11، شماره 21 - ( بهار و تابستان 1402 )                   جلد 11 شماره 21 صفحات 98-88 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Allahinezhad I, Heydari M, Mirzaei J, Fathizadeh O, Lorenz P. (2023). Evaluation of the Rainfall Components Distribution and the optimum Samples Size to Estimate Throughfall for Needleleaf and Broadleaf Stands in Zagros Forests, Ilam. Ecol Iran For. 11(21), 88-98. doi:10.61186/ifej.11.21.88
URL: http://ifej.sanru.ac.ir/article-1-487-fa.html
اللهی نژاد اسماعیل، حیدری مهدی، میرزایی جواد، فتحی زاده امید، لورنز پیلار. ارزیابی توزیع اجزای باران و تعداد نمونه مناسب برای برآورد تاج بارش در توده های سوزنی برگ و پهن برگ جنگل های زاگرس، ایلام بوم شناسی جنگل های ایران (علمی- پژوهشی) 1402; 11 (21) :98-88 10.61186/ifej.11.21.88

URL: http://ifej.sanru.ac.ir/article-1-487-fa.html


1- گروه علوم جنگل، دانشگاه ایلام، ایلام
2- دانشکده کشاورزی، دانشگاه ایلام، ایلام،
3- دانشگاه ایلام
4- گروه جنگلداری، دانشکده کشاورزی و منابع طبیعی اهر، دانشگاه تبریز، اهر
5- مؤسسه ارزیابی زیست محیطی و تحقیقات آب (IDAEA)، CSIC، بارسلون، اسپانیا
چکیده:   (2690 مشاهده)
چکیده مبسوط
مقدمه و هدف: اندازه‌گیری باران و اجزای آن در مناطق جنگلی برای مدیریت منابع آبی سرزمین امری ضروری است. تاج­ بارش از اجزای مهم چرخۀ آب در بوم ­سازگان­ های جنگلی است که به دلیل ساختار ناهمگن تاج ­پوشش و الگوهای متغیر بارندگی دارای تغییرات مکانی زیادی است. با این حال در زمینه تعیین تعداد نمونه مناسب برای برآورد تاج بارش، پژوهش­ های محدودی انجام شده است. هدف از این مطالعه، ارزیابی توزیع اجزای باران و تخمین تعداد جمع­ آوری کننده ­های مورد نیاز برای برآورد میانگین تجمعی تاج­ بارش توده ­های بلوط ایرانی (Quercus brantii)، کاج تهران (Pinus eldarica) و سرو نقره ­ای (Cupressus arizonica) با درصد خطای معین در جنگل­ کاری­ های نیمه­ خشک زاگرس (پارک جنگلی چغاسبز، شهرستان ایلام) است. با تعیین تعداد مناسب جمع آوری کننده می‌توان با دقت قابل قبول و نیز صرفه جویی در زمان و هزینه، اندازه‌گیری مناسبی از باران و اجزای آن در مناطق جنگلی داشت.
مواد و روش ­ها: این پژوهش از مهرماه 1397 تا بهمن ماه 1398، در توده ­های طبیعی بلوط ایرانی و جنگل­ کاری­ های 30 ساله کاج تهران و سرو نقره­ ای انجام شد. میزان بارندگی توسط پنج جمع­ آوری کننده باران که در فضای باز (خارج از تاج پوشش) مجاور توده ­های مورد بررسی نصب شده بودند، اندازه‌گیری شد. اندازه­ گیری تاج ­بارش توسط 27 عدد جمع ­آوری کننده در توده بلوط ایرانی و 36 عدد جمع­ آوری کننده در هر کدام از توده­ های کاج تهران و سرو نقره ­ای انجام شد و متوسط ساقاب پنج درخت در هر توده به‌عنوان متوسط ساقاب درختان توده در نظر گرفته شد. مقدار باران­ ربایی نیز از تفاضل مقدار باران و مجموع تاج بارش و ساقاب برآورد شد. همچنین برای برای محاسبه تعداد جمع ­آوری کننده ­های لازم برای تخمین تاج ­بارش در یک حد آستانه مطلوب از معادله Kimmins (1973) استفاده شد.
یافته­ ها: در دوره زمانی مطالعه، 20 بارندگی (در مجموع 258/2 میلی ­متر) مورد اندازه ­گیری قرار گرفت و به‌طور متوسط در توده بلوط ایرانی، کاج ­تهران و سرونقره ­ای به‌ترتیب 80، 50 و 59 درصد از آن به‌صورت تاج­ بارش از تاج ­پوشش درختان عبور کرد. مقدار باران­ ربایی به‌طور متوسط برای بلوط ایرانی 46/23 میلی­ متر، کاج­ تهران 113/17 میلی ­متر و سرو نقره ­ای 92/17 میلی­ متر محاسبه شد. نتایج نشان داد که میانگین تعداد جمع ­آوری کننده­ های لازم برای بلوط ایرانی با درصد خطای 5، 10 و 15 درصد میانگین تجمعی تاج ­بارش و با حدود اعتماد 95 درصد به ­ترتیب 102، 25 و 11 عدد، برای توده کاج­ تهران به‌ترتیب 41، 10 و 5 عدد و برای توده سرو نقره ­ای 30، 8 و 3 عدد است.
نتیجه­ گیری: با توجه به نتایج این مطالعه، بین مقدار باران و تاج ­بارش، رابطه مثبت و قوی برای بلوط ایرانی (0/9155=R2)، کاج تهران (0/8831R2=) و سرو نقره ­ای (0/8967=R2) مشاهده شد. براین اساس می­ توان گفت با افزایش اندازه باران، میزان تاج ­بارش افزایش می­ یابد. با توجه به رژیم بارش و اهمیت آب در این مناطق، باید در جنگل کاری­ ها و مدل سازی فرآیندهای اکوهیدرولوژی در اکوسیستم­ های جنگلی، اولویت کاشت با گونه ­های با مقدار تاج­ بارش بیشتر و باران ­ربایی کمتر مدنظر قرار گیرد. برای اندازه­ گیری میانگین تجمعی تاج ­بارش بلوط ایرانی با خطای 10 درصد، تعداد 27 عدد جمع آوری­ کننده کافی است. در توده ­های کاج تهران و سرونقره­ ای که تعداد 36 عدد جمع ­آوری کننده مورد استفاده قرار گرفت نیز برای اندازه ­گیری میانگین تجمعی تاج ­بارش با خطای 5 درصد این تعداد مناسب است. بنابراین، در توده بلوط ایرانی برای تخمین میانگین تجمعی تاج­ بارش با درصد خطای کمتر باید تعداد جمع ­آوری کننده ­ها افزایش یابد و در دو توده دیگر تعداد جمع ­آوری کنندها مناسب تشخیص داد شد.

 
متن کامل [PDF 2028 kb]   (755 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اکولوژی جنگل
دریافت: 1401/9/15 | پذیرش: 1401/10/26

فهرست منابع
1. Bellot, J. and A. Escarre. 1991. Chemical characteristics and temporal variations of nutrients in throughfall and stemflow of three species of Mediterranean holm oak forest. Forest Ecology and Management, 41: 125-135. [DOI:10.1016/0378-1127(91)90123-D]
2. Borken, W., Y.J. Xu, R. Brumme and N. Lamersdorf. 1999. A climate change scenario for carbon dioxide and dissolved organic carbon fluxes from a temperate forest soil drought and rewetting effects. Soil Science Society of America Journal, 63(6): 1848-1855. [DOI:10.2136/sssaj1999.6361848x]
3. Bouten, W., T.J. Heimovaara and A. Tiktak. 1992. Spatial patterns of throughfall and soil water dynamics in a Douglas fir stand. Water Resource Research, 28: 3227-3233. [DOI:10.1029/92WR01764]
4. Cao, Y., Z.Y. Ouyang, H. Zheng, Z.G. Huang, X.K. Wang and H. Miao. 2008. Effects of forest plantation on rainfall redistribution and erosion in the red soil region of Southern China. Land Degradation Development, 19: 321-330. [DOI:10.1002/ldr.812]
5. Carlyle-Moses, D.E. and J. H.C. Gash. 2011. Rainfall Interception Loss by Forest Canopies, Forest Hydrology and Biogeochemistry, 216: 407-423. [DOI:10.1007/978-94-007-1363-5_20]
6. Carlyle-Moses, D.E., J.S. Fores Laureano and A. Price. 2004. Throughfall and throughfall spatial variabiltiy in Madrean oak forest communities of northeastern Mexico. Journal of Hydrology, 297: 124-135. [DOI:10.1016/j.jhydrol.2004.04.007]
7. Esmaeeli, Z., B. Pilhvar, A. Kaboodi and Z. Mirazadi. 2017. The approoriate sampling method for estimating density and crown canopy of declined oak stands in dinarkooh protected forest, Abdanan, Ilam. Ecology of Iranian Forests, 5(10): 53-60 (In Persian). [DOI:10.29252/ifej.5.10.53]
8. Fathizadeh, O., P. Attarod, R.F. Keim, G.H. Zahedi Amiri and A.A. Darvishsefat. 2014. Spatial heterogeneity and temporal stability of throughfall under individual Quercus brantii trees. Hydrological Processes, 28: 1124-1136. [DOI:10.1002/hyp.9638]
9. Fathizadeh, O., P. Attarod and H. Sohrabi. 2014. The optimum samples size to estimate throughfall for individual Brant's oaks (Quercus brantii) in Zagros forests. Iranian Journal of Forest and Poplar Research, 22(4): 574-584 (In Persian).
10. Fathizadeh, O., S.M. Hosseini, A. Zimmermann, R.F. Keim and A. Darvishi Boloorani. 2017. Estimating Linkages between forest structural variables and rainfall interception parameters in semiarid deciduous oak forest stands. Science of the Total Environment, (601-602), 1824-837. [DOI:10.1016/j.scitotenv.2017.05.233]
11. Fathizadeh, O., S.M. Hosseini, R.F. Keim and A.D. Boloorani. 2018. A seasonal evaluation of the reformulated Gash interception model for semi-arid deciduous oak forest stands. Forest Ecology and Management, 409: 601-613. [DOI:10.1016/j.foreco.2017.11.058]
12. Fathizadeh, O., S.M.M. Sadeghi, I. Pazhouhan, S. Ghanbari, P. Attarod and L Su. 2021. Spatial variability and optimal number of rain gauges for sampling throughfall under single oak trees during the leafless period. Forests 12(5): 585. [DOI:10.3390/f12050585]
13. Ford, E. and J. Deans. 1978. The effects of canopy structure on stemflow, throughfall and interception loss in a young Sitka spruce plantation. Journal of Applied Ecology, 15: 905-917. [DOI:10.2307/2402786]
14. Gomez, J.A., K. Vanderlinden, J.V. Giraldez and E. Fereres. 2002. Rainfall concentration under olive trees. Agricultural Water Management, 55: 53-70. [DOI:10.1016/S0378-3774(01)00181-0]
15. Karamian, M. and J. Mirzaei. 2020. The most important factors affecting Persian oak (Quercus brantii) decline in Ilam province. Ecology of Iranian Forests, 8(15): 93-103 (In Persian). [DOI:10.52547/ifej.8.15.93]
16. Kimmins, J.P. 1973. Some statistical aspects of sampling throughfall precipitation in nutrient cycling studies in British Columbian coastal forests. Ecology, 54: 1008-1019. [DOI:10.2307/1935567]
17. Kostelnik, K.M., J.A. Lynch, J.W. Grimm and E.S. Corbett. 1989. Sample size requirements for estimation of throughfall chemistry beneath a mixed hardwood forest. Journal of Environmental Quality, 18: 274-280. [DOI:10.2134/jeq1989.00472425001800030005x]
18. Lawrence, G.B. and I.J. Fernandez. 1993. A reassessment of areal variability of throughfall deposition measurements. Ecol. Appl, 3: 473-480. [DOI:10.2307/1941916]
19. Levia, D.F. and E.E. Frost. 2006. Variability of throughfall volume and solute inputs in wooded ecosystems. Progress in Physical Geography, 30: 605-632. [DOI:10.1177/0309133306071145]
20. Llorens, P., R. Poch, J. Latron and F. Gallart. 1997. Rainfall interception by a Pinus sylvestris forest patch overgrown in a Mediterranean mountainous abandoned area I. Monitoring design and results down to the event scale. Journal of Hydrology, 199: 331-345. [DOI:10.1016/S0022-1694(96)03334-3]
21. Lloyd, C.R. and F. Marques. 1988. Spatial variability of throughfall and stemflow measurements in Amazonian rainforest. Agricultural and Forest Meteorology, 42: 63-73. [DOI:10.1016/0168-1923(88)90067-6]
22. Herrera-Ceferino, M.M., J.C. Viviescas-Restrepo and N.J. Aguirre-Ramirez. 2021. Effect of the Ground Slope and Soil Infiltration on the Water Nitrate Ion Concentrations. Revista EIA, 18(35): 200-208. [DOI:10.24050/reia.v18i35.1457]
23. Holwerda, F., F.N. Scatena and L.A. Bruijnzeel. 2006. Throughfall in a Puerto Rican lower montane rain forest: A comparison of sampling strategies. Journal of Hydrology, 327: 592-602. [DOI:10.1016/j.jhydrol.2005.12.014]
24. Masukata, H., M. Ando and H. Ogawa. 1990. Throughfall, stemflow and interception of rainwater in an evergreen broadleaved forest. Ecological Research, 5: 303-316. [DOI:10.1007/BF02347006]
25. Navar, J., D.E. Carlyle-Moses and M.A. Martinez. 1999. Interception loss from the Tamaulipan matorral thornscrub of northeastern Mexico: an application of the Gash analytical interception loss model. Journal of Arid Environments, 41: 1-10. [DOI:10.1006/jare.1998.0460]
26. Piri, A.S. 2011. Natural Resources landscape of Ilam Province, Natural Resources Department of Ilam Province, 55 pp.
27. Pypker, T.G., B.J. Bond, T.E. Link, D. Marks and M.H. Unsworth. 2005. The importance of canopy structure in controlling the interception loss of rainfall: Examples from a young and an old-growth Douglas-fir forest, Agricultural and Forest Meteorology, 130(1): 113-129. [DOI:10.1016/j.agrformet.2005.03.003]
28. Robson, A.J., C. Neal, G.P. Ryland and M. Harrow. 1994. Spatial variation in throughfall chemistry at the small plot scale. Journal of Hydrology, 158: 107-122. [DOI:10.1016/0022-1694(94)90048-5]
29. Rodrigo, A. and A. Avila. 2001. Influence of sampling size in the estimation of mean throughfall in two Mediterranean holm oak forests. Journal of Hydrology, 243: 216-227. [DOI:10.1016/S0022-1694(00)00412-1]
30. Roy, M.B., P.K. Roy, S. Halder, G. Banerjee and A. Mazumdar. 2021. Assessment of Stream Flow Impact on Physicochemical Properties of Water and Soil in Forest Hydrology through Statistical Approach. In India: Climate Change Impacts, Mitigation and Adaptation in Developing Countries, 207-225 pp. [DOI:10.1007/978-3-030-67865-4_9]
31. Sadeghi, S.M.M. and P. Attarod. 2017. Estimation of ecohydrological parameters of trunk and canopy of a Pinus eldarica plantation. Journal of Forest Research and Developmet, 3(3): 207-220.
32. Staelens, J., A. De Schrijver, K. Verheyen and N.E.C. Verhoest. 2008. Rainfall partitioning into throughfall, stemflow, and interception within a single beech (Fagus sylvatica L.) canopy: Influence of foliation, rain event characteristics, and meteorology. Hydrological Processes, 22: 33-45. [DOI:10.1002/hyp.6610]
33. Su, L., Z. Xie, W. Xu and C. Zhao. 2019. Variability of throughfall quantity in a mixed evergreen-deciduous broadleaved forest in central China. J. Hydrol. Hydromech, 67(3): 225-231. [DOI:10.2478/johh-2019-0008]
34. Viville, D., P. Biron, A. Granier, E. Dambrine and A. Probst. 1993. Interception in a mountainous declining spruce stand in the Strengbach catchment (Vosges, France), Journal of Hydrology, 144(1-4): 273-282. [DOI:10.1016/0022-1694(93)90175-9]
35. Wullaert, H., T. Pohlert, J. Boy, C. Valarezo and W. Wilcke. 2009. Spatial throughfall heterogeneity in a montane rain forest in Ecuador: Extent, temporal stability and drivers. Journal of Hydrology, 377: 71-79. [DOI:10.1016/j.jhydrol.2009.08.001]
36. Xu, Q., S. Liu, X. Wan, C. Jiang, X. Song and J. Wang. 2012. Effects of rainfall on soil moisture and water movement in a subalpine dark coniferous forest in southwestern China. Hydrological Processes, 26(25): 3800-3809. [DOI:10.1002/hyp.8400]
37. Ziegler, A.D., T.W. Giambelluca, M.A. Nullet, R.A. Sutherland, C. Tantasarin, J.B. Vogler and J.N. Negishi. 2009. Throughfall in an evergreen-dominated forest stand in northern Thailand: Comparison of mobile and stationary methods. Agricultural and Forest Meteorology, 149(2): 373-384. [DOI:10.1016/j.agrformet.2008.09.002]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به بوم‏شناسی جنگل‏های ایران می‌باشد.

طراحی و برنامه نویسی: یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Ecology of Iranian Forest

Designed & Developed by: Yektaweb