دوره 11، شماره 21 - ( بهار و تابستان 1402 )                   جلد 11 شماره 21 صفحات 39-24 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

khalili Z, Fallah A, Shataee S. (2023). Canopy Gap delineation using UAV data in Coniferous Forests using (Case Study: Arab Dagh Region in Golestan Province). ifej. 11(21), 24-39. doi:10.61186/ifej.11.21.24
URL: http://ifej.sanru.ac.ir/article-1-468-fa.html
خلیلی زینب، فلاح اصغر، شتایی شعبان. تهیه نقشه روشنه تاجی در جنگل کاری های سوزنی‌برگان با استفاده از تصاویر پهپادی (مطالعه موردی: منطقه عرب داغ گلستان) بوم شناسی جنگل های ایران (علمی- پژوهشی) 1402; 11 (21) :39-24 10.61186/ifej.11.21.24

URL: http://ifej.sanru.ac.ir/article-1-468-fa.html


دانشگاه کشاورزی و منابع طبیعی ساری
چکیده:   (2246 مشاهده)
چکیده مبسوط
مقدمه و هدف: روشنه­ های تاج­  پوشش جنگلی نقش مهمی در پویایی جنگل دارند. داده­ های پهپاد ظرفیت خوبی را برای شناسایی و استخراج اطلاعات نظیر روشنه ­ها در مناطق جنگلی ارائه نموده و به‌عنوان یک منبع جایگزین وکم ‌هزینه برای کسب اطلاعات ساختار جنگل مطرح‌شده است. هدف این تحقیق، بررسی و مقایسه روش­ های استخراج روشنه در تهیه نقشه روشنه‌های تاجی با استفاده از داده­ های پهپاد در بخشی از جنگل­ کاری­ های عرب داغ استان گلستان می­ باشد.
مواد و روش ­ها: پس از اخذ تصاویر مناسب و انجام پیش‌پردازش‌های لازم، ارتوموزائیک، مدل رقومی ارتفاع زمین (DTM)، مدل رقومی سطح (DSM) و مدل رقومی ارتفاع تاج پوشش (CHM) تهیه شد. شناسایی و تهیه روشنه‌ها با روش ­های آستانه ارتفاعی ثابت، آستانه شیب مدل ارتفاعی تاج­ پوشش جنگل و
طبقه ­بندی شی­ء ‌پایه انجام شد. به‌منظور بررسی کارایی روش‌های مختلف و انجام ارزیابی صحت و دقت نقشه‌ها، مراکز و محدوده تعدادی از روشنه‌ها با استفاده از سامانه GPS تفاضلی برداشت شد. صحت روشنه ­ها به‌صورت نقطه‌ای و تطابق هندسه محدوده­ای روشنه­ های استخراجی با نقشه واقیت زمینی ارزیابی شد.
یافته­ ها: نتایج ارزیابی صحت نقطه­ ای نشان داد که روش طبقه‌بندی شی­ء ‌پایه با الگوریتم ماشین‌بردارپشتیبان با صحت کلی 99 درصد و ضریب کاپا 0/98 دارای بهترین عملکرد نسبت به سایر روش ­ها و الگوریتم ­ها بوده است. در ارزیابی تطابق محدوده­ای، بیشترین تطابق روشنه­ های استخراج‌شده با روشنه­ های واقعیت زمینی در آستانه ارتفاع سه متر به ­دست آمد.
نتیجه­ گیری: نتایج نشان داد که می­ توان با تصاویر هوایی پهپاد و خروجی­ های حاصل از آن و همچنین کار گرفتن روش­ های خودکار، نقشه روشنه ­های تاجی را با دقت خوبی استخراج کرد. البته میزان دقت به عوامل متعددی مانند نوع پهپاد و دوربین­ های استفاده‌شده، پارامترهای پرواز و غیره بستگی دارد. با توجه به‌دقت نتایج به دست آمده، استفاده از این روش برای آماربرداری جنگل توصیه می­ شود.

 
متن کامل [PDF 2369 kb]   (1096 دریافت)    
نوع مطالعه: كاربردي | موضوع مقاله: سنجش از دور
دریافت: 1401/3/7 | پذیرش: 1401/4/22 | انتشار: 1402/5/10

فهرست منابع
1. Alavi Panah, S.K. 2005. Application of Remote Sensing in Earth Sciences. University of Tehran Publications. 268 p (In Persian).
2. Amini, SH. 2022. Quantitative and dynamic analysis of geometric characteristics and spatial patterns of canopy gaps using unmanned Aerial vehicles in managed and unmanaged stands (In the Dr. Bahramnia forestry plan), Gorgan, Iran,160 pp (In Persian).
3. Baatz, M. and A. Schape. 1999. Object-oriented and multi-scale image analysis in semantic network. in Proc. of 2nd Int. symposium on operalization of remote sensing, Ensched, ITC, 148-157.
4. Bi, S., Y. Tan, Y. Wang, M. Liu and M. xuegang. 2020. Quantification of Spatial Structure Characteristics of Typical Natural Secondary Forest Gaps in Northeastern China. https://doi.org/10.21203/rs.3.rs-38728/v1 [DOI:10.21203/rs.3.rs-38728/v1.]
5. Blaschke, T. 2014. Object based image analysis for remote sensing. ISPRS journal of photogrammetry and remote sensing, 65(1): 2-16. [DOI:10.1016/j.isprsjprs.2009.06.004]
6. Booklet of Arab Dagh hot breeding plan, 2016. General Department of Natural Resources and watershe Management of Golestan Province.697.
7. Bonnet, S., R. Gaulton, F. Lehaire and P. Lejeune. 2015. Canopy gap mapping from airborne laser scanning: An assessment of the positional and geometrical accuracy. Remote Sensing, 7(9): 11267-11294. [DOI:10.3390/rs70911267]
8. Brokaw, N.V.L. 1982. The definition of treefall gap and its effect on measures of forest dynamics. Biotropica, 14: 158-160. [DOI:10.2307/2387750]
9. Chaudhuri, B. and N. Sarkar. 1995. Texture segmentation using fractal dimension. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17: 72-77 pp. [DOI:10.1109/34.368149]
10. Chung, C.H., C.H. Wang. C.H. Hsieh and C.Y. Huang. 2022. Comparison of forest canopy height profiles in a mountainous region of Taiwan derived from airborne lidar and unmanned aerial vehicle imagery. GISci. Remote Sens, 56: 1289-1304 pp. [DOI:10.1080/15481603.2019.1627044]
11. Choi, H., Y. Song and Y. Jang. 2019. Urban forest growth and gap dynamics detected by yearly repeated Airborne Light Detection and Ranging (LiDAR): a case study of Cheonan. South Korea, Remote Sensing, 11(13): 1551. https://doi.org/10.3390/rs11131551 [DOI:10.3390/ rs11131551]
12. Clinton, N., A. Holt, J. Scarborough, L. Yan and P. Gong. 2010. Accuracy assessment measure for object-base image segmentation goodness. Photogrammetric Engineering & Remote Sensing, 289-299. [DOI:10.14358/PERS.76.3.289]
13. Daniels, L.D. and R.W. Gray. 2006. Disturbance regimes in coastal British Columbia. Br.Columbia Journal Ecosystem Management, 7(2): 44-56. [DOI:10.22230/jem.2006v7n2a542]
14. Darvishsefat, A.A., O. Rafieyan, S. Babaii Kafaki and A. Mataji. 2010. Evaluation of UltraCam-D images capability for tree species identification using object-based method in the even-aged mixed forestation, Iranian Journal of Forest, 2(2): 165-176 (In Persian).
15. Delfan Abazari, B., KH. Sagheb-Talebi and M. Namiranian. 2004. Regeneration gaps and quantitative characteristics of seedlings in different development stages of undisturbed beech stands (Kelardasht, Northern Iran), Iranian Journal of Forest and Poplar Research, 12(2): 251-266 (In Persian).
16. Espírito-Santo, F.D.B., M.M. Keller, E. Linder, R.C. Oliveira Junior, C. Pereira and C.G. Oliveira. 2014. Gap formation and carbon cycling in the Brazilian Amazon: measurement using high-resolution optical remote sensing and studies in large forest plots. Plant Ecolology Divers, 7(1-2): 305-318. https://doi.org/10.1080/17550874.2013.795629 [DOI:10.1080/ 17550874.2013.795629.]
17. Gaulton, R. and T.J. Malthus. 2010. LiDAR mapping of canopy gaps in continuous cover forests: A comparison of canopy height model and point cloud based techniques. International Journal of Remote Sensing, 31(5): 1193-1211. [DOI:10.1080/01431160903380565]
18. Gajardo, J., D. Riano, M. Garcia, J. Salas and M.P. Martin.2020. Estimation of Canopy Gap Fraction from Terrestrial Laser Scanner Using an Angular Grid to Take Advantage of the Full Data Spatial Resolution. Remote Sensing, 17(12): 1596. [DOI:10.3390/rs12101596]
19. Getzin, S., R.S. Nuske and K. Wiegand. 2014. Using unmanned aerial vehicles (UAV) to quantify spatial gap patterns in forests. Remote Sensing, 6(8): 6988-7004. https://doi.org/10.3390/rs6086988 [DOI:10.3390/rs6086988.]
20. Gu, J., H. Grybas and R.G. Congalton. 2020. A comparison of forest tree crown delineation from unmanned aerial imagery using canopy height models vs. spectral lightness. Forests, 11(6). https://doi.org/10.3390/f11060605 [DOI:10.3390/F11060605]
21. Hobi, M.L., C. Ginzler, B. Commarmot and H. Bugmann. 2015. Gap pattern of the largest primeval beech forest of Europe revealed by remote sensing. Ecosphere, 6(5). [DOI:10.1890/ES14-00390.1]
22. Hoover, A. 1996. An experimental comparison range image segmentation algorithms, IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(7): 673-689. [DOI:10.1109/34.506791]
23. Hopkinson, C., L. Chasmer, A.G. Barr, N. Kljun, T.A. Black and J.H.M. McCaughey. 2016. Monitoring boreal forest biomass and carbon storage change by integrating airborne laser scanning. biometry and eddy covariance data. Remote Sensing of Environment, 181: 82-95. [DOI:10.1016/j.rse.2016.04.010]
24. Hunter, M.O., M. Keller, D. Morton, B. Cook, M. Lefsky, M. Ducey, S. Saleska, R.C. de Oliveira, J. Schietti and R. Zang. 2015. Structural dynamics of tropical moist forest gaps. Plos One 10 (7): e0132144. https://doi.org/10.1371/journal.pone.0132144 [DOI:10.1371/journal. pone.0132144.]
25. Hunt, E.R., W.D. Hively. C.S. Daughtry. G.W. McCarty. S.J. Fujikawa.T.L. Ng. M. Tranchitella. D.S. Linden and D.W. Yoel. 2008. Remote sensing of crop leaf area index using unmannedairborne vehicles. In: In Proceedings of the Pecora 17 Symposium, Denver, CO.
26. Hytteborn, H. and T. Verwijst. 2013. Small-scale disturbance and stand structure dynamics in an old-growth Picea abies forest over 54 yr in central Sweden. Journal Veg. Science, 25: 100-112. [DOI:10.1111/jvs.12057]
27. Karagiannis, G., F.N. Castro and D. Mioc. 2016. Automated photogrammetric image matching with SIFT algorithm and Delaunay triangulation. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-2. [DOI:10.5194/isprs-annals-III-2-23-2016]
28. Kavzoglu, T. and H. Tonbul. 2017. A comparative study of segmentation quality for multi-resolution segmentation and watershed transform. 8th International Conference on Recent Advances in Space Technologies (RAST), June, 113-117. [DOI:10.1109/RAST.2017.8002984]
29. Kent, R., J.A. Lindsell, G. Laurin, R. Valentini and D.A. Coomes. 2015. Airborne LiDAR Detects Selectively Logged Tropical Forest Even in an Advanced Stage of Recovery. Remote Sensing, 7: 8348-8367; doi:10.3390/rs70708348 [DOI:10.3390/rs70708348]
30. Koukoulas, S. and G.A. Blackburn. 2004. Quantifying the spatial properties of forest canopy gaps using LiDAR imagery and GIS. International Journal Remote Sensing, 25(15): 3049-3072. 57786 [DOI:10.1080/014311603100016]
31. Kousari Pelangi, Gh. 2015. Forest conopy gap detection and mapping using of Lidar data and aerial digital camera images. MSc Thesis, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran, 114 pp (In Persian).
32. Küng, O., C. Strecha, A. Beyeler, J.C. Zufferey, D. Floreano, P. Fua and F. Gervaix. 2011. The accuracy of automatic photogrammetric techniques on ultralight UAV imagery. In UAV-g 2011-Unmanned Aerial Vehicle in Geomatics (No.EPFL-CONF-168806).
33. Lertzman, K.P., G.D. Sutherland, A. Inselberg and S.C. Saunders. 1996. Canopy gaps and the landscape mosaic in a coastal temperate rain forest. Ecology, 77(4):1254-1270. [DOI:10.2307/2265594]
34. Lombard, L., R. Ismail and N. Poona. 2019. Modelling forest canopy gaps using LiDAR-derived variables. Geocarto Int. 34(2): 179-193. https://doi.org/10.1080/10106049.2017.1377775 [DOI:10.1080/ 10106049.2017.1377775.]
35. Lucieer, A. and A. Stein. 2002. Existential uncertainty of spatial objects segmented from satellite sensor imagery, IEEE Transactions on Geoscience and Remote Sensing, 40(11). [DOI:10.1109/TGRS.2002.805072]
36. Mao, X., J. Hou and W. Fan. 2017. Object-Based Automatic Recognition for Forest Gaps Using Aerial Image and LiDAR Data. In Linye Kexue/Scientia Silvae Sinicae, 53(11): 94-103. [DOI:10.11707/j.1001-7488.20171111]
37. Mlambo, R., H.I. Woodhouse, F. Gerard and K. Anderson. 2017. Structure from Motion (SfM) photogrammetry with drone data: A low cost method for monitoring greenhouse gas emissions from forests in developing countries. Forests, 68: 1-20. [DOI:10.3390/f8030068]
38. Michelettti, N., J.H. Chandler and S. Lane. 2013. Structure from motion (SFM) photogrammetry. Geomorphological techniques, 2(2): 1-11.
39. Næsset, E. 2015. Vertical height errors in digital terrain models derived from airborne laser scanner data in a boreal-alpine ecotone in Norway. Remote Sensing, 7: 4702-4725. [DOI:10.3390/rs70404702]
40. Nuske, R.S. 2019. Acquisition and Characterization of Canopy Gap Patterns of Beech Forests.
41. Qinghong, L. and H. Hytteborn. 1991. Gap structure, disturbance and regeneration in a primeval Picea abies forest. Journal Vegetation Science, 2: 391-402. [DOI:10.2307/3235932]
42. Richards, J.A. and J. Xiuoing. 1999. Remote sensing Digital Image analysis. 3 rd. Springer pud, 363 p. [DOI:10.1007/978-3-662-03978-6]
43. Runkle, J.R. 1982. Patterns of disturbance in some old-growth mesic forests of eastern North America. Ecology, 63(5): 1533-1546 pp. [DOI:10.2307/1938878]
44. Salmani, S., H. Ebrahimy. K. Mohammadzade and K. Valizadeh Kamran. 2019. Evaluating efficiency of object-based classification techniques used to extract land use from IKONOS satellite imageries. Scientific-Research Quarterly of Geographical Data (Sepehr), 28(111): 205-215.
45. Sadeghzadeh, H. and A. Rostaghi. 2011. A Study of Vegetative Yield of Borussia Pine (Case Study: Arab-Dagh Forestry Project). Iranian Forest Journal, 3: 201-212 (In Persian).
46. Shabanipour, M. 2011. Investigation of the possibility of distinguishing tree species in digital image with high spatial resolution by basic object classification method (Case study: Taleghani Park, Tehran). MScThesis, University of Tehran, Tehran, Iran,73 pp (In Persian).
47. Shataee Joybari, Sh., A.A. Darvishsefat and H. Sobhani. 2007. Comparison of pixel-based and object-based approaches for forest type mapping using satellite data, Journal of the Iranian Natural Resource, 60(3): 869- 881 (In Persian).
48. Shataee Joybari, SH. 2003. Investigating the possibility of preparing a map of forest types using satellite data (case study:Nowshahr Khairudkanar Research Educational Forest), PhD Thesis, University of Tehran, 155 p.
49. Stark, S. 2012. Amazon forest carbon dynamics predicted by profiles of canopy leaf area and light environment. Ecology Letters, 15(12): 1406-1414. [DOI:10.1111/j.1461-0248.2012.01864.x]
50. Strasser, T. and S. Lang. 2015. Object-based class modelling for multi-scale riparian forest habitat mapping. International Journal of Applied Earth Observation and Geoinformation, 37: 29-37. [DOI:10.1016/j.jag.2014.10.002]
51. Szuster, B.W., Q. Chen and M. Borger. 2011. A comparison of classification techniSues to support land cover and land use analysis in tropical coastal zones. Applied Geography, 31(2): 525-532. [DOI:10.1016/j.apgeog.2010.11.007]
52. Torresan, C., A. Berton, F. Carotenuto, S.F. Di Gennaro, B. Gioli, A. Matese, F. Miglietta, C. Vagnoli. A. Zaldei and L. Wallace. 2017. Forestry applications of UAVs in Europe: a review. International Journal of Remote Sensing, 38(8-10): 2427-2447. [DOI:10.1080/01431161.2016.1252477]
53. Valbuena, R., M. Maltamo, L. Mehtätalo and P. Packalen 2017. Key structural features of boreal forests may be detected directly using L‐moments from airborne lidar data. Remote Sensing of Environment, 194: 437-446. [DOI:10.1016/j.rse.2016.10.024]
54. Vepakomma, U., B. St-Onge and D. Kneeshaw. 2008. Spatially explicit characterization of boreal forest gap dynamics using multi-temporal lidar data. Remote Sens. Environ. 112(5): 2326-2340. https://doi.org/10.1016/j.rse.2007.10.001 [DOI:10.1016/j.rse.2007.10.001.]
55. White, J.C., P. Tompalski, N.C. Coops and M.A. Wulder. 2018. Comparison of airborne laser scanning and digital stereo imagery for characterizing forest canopy gaps in coastal temperate rainforests. Remote Sens. Environ. 208, 1-14. https://doi.org/ 10.1016/j.rse.2018.02.002. https://doi.org/10.1016/j.rse.2018.02.002 [DOI:10.1016/j.rse.2018.02.002.]
56. Yu, Q., P. Gong, N. Clinton, G. Biging, M. Kelly and D. Schirokauer. 2006. Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery. Photogrammetric Engineering & Remote Sensing, 72(7): 799-811. [DOI:10.14358/PERS.72.7.799]
57. Xuegang, M., Z. Liang and W. Fan. 2020. Object-Oriented Automatic Identification of Forest Gaps Using Digital Orthophoto Maps and LiDAR Data. Canadian Journal of Remote Sensing, 46(2): 177-192. [DOI:10.1080/07038992.2020.1768515]
58. Zhang, K. 2008. Identification of gaps in mangrove forests with airborne LIDAR. Remote Sensing Environ, 112(5): 2309-2325. https://doi.org/10.1016/j.rse.2007.10.003 [DOI:10.1016/j.rse.2007.10.003.]
59. Zheng, G., G.L. Shen and M. Moskal. 2021. Characterizing spatiotemporal variations of forest canopy gaps using aerial laser scanning data. International Journal of Applied Earth Observations and Geoinformation 104. [DOI:10.1016/j.jag.2021.102588]
60. Zielewska-Büttner, K., P. Adler, M. Ehmann and V. Braunisch. 2016. Automated detection of forest gaps in spruce dominated stands using canopy height models derived from stereo aerial imagery. Remote Sensing, 8(3): 1-21. https://doi.org/10.3390/rs8030175 [DOI:10.3390/rs8030175.]
61. Zielewska-Büettner, K., P. Adler, M. Ehmann and V. Braunisch. 2017. Erratum: automated detection of forest gaps in spruce dominated stands using canopy height models derived from stereo aerial imagery. Remote Sensing, 9(5): 471. [DOI:10.3390/rs9050471]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به بوم‏شناسی جنگل‏های ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Ecology of Iranian Forest

Designed & Developed by : Yektaweb