دوره 10، شماره 19 - ( بهار و تابستان 1401 )                   جلد 10 شماره 19 صفحات 182-171 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rousta M J, Soleimanpour S M, Enayati M, Pakparvar M. (2022). Effect of Vegetation Type and Soil Chemical Properties on the Organic Carbon Content in the Soil of Flood Spreading Fields of Kowsar Station. ifej. 10(19), 171-182. doi:10.52547/ifej.10.19.171
URL: http://ifej.sanru.ac.ir/article-1-408-fa.html
روستا محمد جواد، سلیمان پور سید مسعود، عنایتی مریم، پاک پرور مجتبی. تأثیر نوع پوشش گیاهی و ویژگی های شیمیایی خاک بر میزان کربن آلی در خاک عرصه های پخش سیلاب ایستگاه کوثر بوم شناسی جنگل های ایران (علمی- پژوهشی) 1401; 10 (19) :182-171 10.52547/ifej.10.19.171

URL: http://ifej.sanru.ac.ir/article-1-408-fa.html


بخش تحقیقات حفاظت خاک و آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان فارس، سازمان تحقیقات، آموزش و ترویج کشاورزی، شیراز، ایران
چکیده:   (2256 مشاهده)
مقدمه و هدف: افزایش کربن­ آلی خاک نه تنها، باعث ترسیب کربن جوی می­شود بلکه اغلب، فرایندها و ویژگی­های فیزیکی، شیمیایی و زیستی خاک را بهبود می ­بخشد. این پژوهش با هدف ارزیابی تأثیر نوع پوشش­ گیاهی و ویژگی­های شیمیایی خاک بر میزان کربن­ آلی خاک در سال‌ 1398 در عرصه­ های پخش سیلاب ایستگاه کوثر واقع در دشت گربایگان فسا (استان فارس) انجام شد. پخش ­­سیلاب برای تغذیه­ ی آبخوان­ها از سال 1361 در پهنه ­ای به ­وسعت 2034 هکتار در این دشت اجرا شده­ است.
مواد و روش­ها: کاربری­های مورد بررسی عبارت بودند از: جنگل دست­ کاشت آکاسیا (Acacia salicina Lindl.)، جنگل دست­کاشت اوکالیپتوس (Eucalyptus camaldulensis Dehnh.)، مرتع دست­ کاشت آتریپلکس [Atriplex lentiformis (Torr.) (Wats.)] و مرتع طبیعی که همگی از طریق پخش ­سیلاب آبیاری می­شوند. با نمونه ­برداری مرکب در سه تکرار از خاک زیر­پوشش کاربری­های مختلف (عمق 30-0 سانتی­متر)، 13 ویژگی شامل: اسیدیته­ ی گل ­اشباع (pH)، قابلیت هدایت­ الکتریکی عصاره­ی ­اشباع (ECe)، کربنات کلسیم، درصد کربن­ آلی، درصد نیتروژن­­کل، نسبت C/N، فسفر و پتاسیم قابل جذب، سدیم، کلسیم و منیزیم عصاره­ ی اشباع، کلسیم+منیزیم و نسبت جذب سدیم (SAR)، اندازه­ گیری و محاسبه شدند. پس از اطمینان از نرمال بودن داده­ ها به وسیله­ ی آزمون کولموگروف-اسمیرنوف، داده ­های به ­دست آمده در قالب طرح آماری بلوک­های کامل تصادفی، تجزیه و تحلیل شده و میانگین­ها با آزمون توکی در سطح پنج درصد مقایسه شدند.
یافته­ ها: نتایج تحلیل واریانس داده ­ها نشان­ داد که از میان متغیر­های بررسی شده، تأثیر تیمار (نوع پوشش­ گیاهی) بر تمام ویژگی­ها (به­ جز SAR) در سطح یک و پنج درصد معنی­دار شده است. برای ارائه­ ی مدل، از روش رگرسیون گام ­به­ گام استفاده شد. نتایج نشان داد متغیرهای نسبت C/N، نیتروژن­کل و ECe، بر میزان ­کربن ­آلی خاک مؤثر هستند و 99/7 درصد از تغییرات آن را توجیه می­کنند. با توجه به ضرایب استاندارد شده در معادله­ی رگرسیون، به ­ازای افزایش هر واحد نسبتC/N ، مقدار 0/939 واحد و به ­ازای هر واحد نیتروژن­کل، مقدار 0/338 واحد و با افزایش هر واحد EC، مقدار 0/109 واحد به میزان ­کربن­ آلی افزوده می­شود.

نتیجه ­گیری: در مجموع، شناخت عوامل مؤثر بر ذخیره­ی ­کربن ­آلی در خاک، می­تواند باعث ارائه­ ی راهکارهای مدیریتی مناسب برای افزایش میزان کربن آلی­ و توسعه­ ی ظرفیت ذخیره ­ی کربن در خاک شده، حاصل­خیزی خاک را بهبود بخشیده و اثرات منفی تغییر ­اقلیم را تا حد زیادی کاهش دهد.
متن کامل [PDF 2081 kb]   (692 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1399/8/25 | پذیرش: 1400/10/14 | انتشار: 1401/3/23

فهرست منابع
1. Ali Ahyaei, M. and A. Behbahanizadeh. 1993. Description of soil chemical analysis methods, Vol. I, Publication No. 893 (In Persian).
2. Azadi, A., S.M. Hojati, H. Jalilvand and H. Naghavi. 2014. Investigation on soil carbon sequestration and understory biodiversity of hard wood and soft wood plantations of Khoramabad city (Makhamalkoh site). Iranian Journal of Forest and Poplar Research, 21(4): 702-715 (In Persian).
3. Babaei Kafaki, S., A. Khademi and A.A. Mataji. 2009. Relationship between leaf area index and physiographical and edaphical condition in a Quercus macranthera stand (case study: Andebil's forest, Khalkhal). Iranian Journal of Forest and Poplar Research, 17(2): 280-289 (In Persian).
4. Badeian, Z. 2006. Relation between carbon stock and pH in the organic and mineral soil layers of a mixed forest of beech. A master thesis in faculty of natural forest, Tehran University, 69 p (In Persian).
5. Barancikova, G., J. Halas, M. Guttekova, J. Makovnikova, M. Navakova, R. Skalsky and Z. Tarasovicova. 2010. Application of RothC model to predict soil organic carbon stock on agricultural soils of Slovakia. Soil and Water Research, 5(1): 1-9. [DOI:10.17221/23/2009-SWR]
6. Bremner, J.M. and C.S. Mulvaney. 1982. Nitrogen-total. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, 595-624 pp. [DOI:10.2134/agronmonogr9.2.2ed.c31]
7. Cleveland, C.C., A.R. Townsend and S.K. Schmidt. 2002. Phosphorus limitation of microbial processes in moist tropical forests: Evidence from short-term laboratory incubations and field studies. Ecosystems, 5: 680-691. [DOI:10.1007/s10021-002-0202-9]
8. Deibert, E.J. and R.A. Utter. 2002. Edible dry bean plant growth and NPK uptake in response to different residue management systems. Community of Soil Science of Plant Analysis, 33: 1959-1974. [DOI:10.1081/CSS-120004835]
9. Dignac, M.F., I. Kogel-Knabner, K. Michel, E. Matzner and H. Knicker. 2002. Chemistry of soil organic matter as related to C: N in Norway spruce forest (Picea abies (L.) Karst.) Floors and mineral soils. Journal of Plant Nutrition and Soil Science, 165: 281-289. https://doi.org/10.1002/1522-2624(200206)165:3<281::AID-JPLN281>3.0.CO;2-A [DOI:10.1002/1522-2624(200206)165:33.0.CO;2-A]
10. Dinakaran, J. and N.S.R. Krishnayya. 2008. Variations in type of vegetal cover and heterogeneity of soil organic carbon in affecting sink capacity of tropical soils. Current Science, 94(9): 1144-1150.
11. Doran, J.W. and T.B. Parkin. 1994. Defining and assessing soil quality. In: Doran JW, Coleman DC, Bezdicek DF, Stewart BA, eds. Defining Soil Quality for a Sustainable Environment. Madison: Soil Science Society of America Journal, 35: 3-21. [DOI:10.2136/sssaspecpub35]
12. Ghahari, G.R. 2019. Vegetation monitoring of Kowsar research aquifer management station. Annual report of research project, Soil Conservation and Watershed Management Research Institute, 55 p (In Persian).
13. Ghasemi, A., H.E. Hydari, F. Fakhri, D. Azadfar and S.M. Sadeghi. 2009. Evaluation of the effect of flood spreading on some arid zone plant species with respect to physico-chemical properties of desert soils (A case study, Bushehr Province). Iranian Journal of Range and Desert Research, 16(3): 362-374 (In Persian).
14. Gijsman, A.J., A. Oberson, H. Tiessen and D.K. Friesen. 1996. Limited applicability of the CENTURY model to highly weathered tropical soils. Agronomy Journal, 88: 894-903. [DOI:10.2134/agronj1996.00021962003600060008x]
15. He, G., Z. Zhang, J. Zhang and X. Huang. 2020. Soil Organic Carbon Dynamics and Driving Factors in Typical Cultivated Land on the Karst Plateau. Int. J. Environ. Res. Public Health, 17: 5697-5710. [DOI:10.3390/ijerph17165697]
16. Homer, C.D. and P.F. Pratt. 1961. Methods of Analysis for Soils, Plants and Waters. University of California, Agricultural Sciences Press, Berkeley, 309 pp.
17. Hong, S., P. Gan and A. Chen. 2019. Environmental controls on soil pH in planted forest and its response to nitrogen deposition. Environmental Research, 172: 159-165. [DOI:10.1016/j.envres.2019.02.020]
18. Jafari, M., M.A. Zare Chahouki, A. Tavili and A. Kouhandel. 2007. Soil-vegetation relationships in rangelands of Qom Province. Pajouhesh-va-Sazandegi, 19(3): 110-116 (In Persian).
19. Kamali, N. and A. Sadeghipour. 2018. Investigation of the effect of some environmental factors on soil carbon storage (Case study: Hashtgerd Alborz). Procceding of 7th National Conference on Rangeland and Rangeland Management of Iran, 9-10 May 2018 (In Persian).
20. Kashi Zenouzi, L., S. Banej Shafiee and A.A. Jafari. 2016. Investigating the effect of some environmental factors on organic carbon in Zilber Chay watershed. Journal of Water and Soil Sciences, 20(76): 207-218 (In Persian). [DOI:10.18869/acadpub.jstnar.20.76.207]
21. Kemmitt, S.J, D. Wright, K.W.T. Goulding and D.L. Jones. 2006. PH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biology and Biochemistry, 38(5): 898-911. [DOI:10.1016/j.soilbio.2005.08.006]
22. Kowsar, S.A. 1992. Desertification control through floodwater spreading in Iran. Unasylva, 168(43): 27-30.
23. Lashanizand, M., Y. Parvizi, L. Ebrahimi, B. Masoudi and B. Rafiee. 2016. Comparison of carbon sequestration resulting from biological operations in Rimele and Abkandari catchments. Iranian Journal of Range and Desert Research, 23(2): 219-230 (In Persian).
24. Liu, J., P. Jiang, H. Wang, G. Zhou, J. Wu, F. Yang and X. Qian. 2011. Seasonal soil CO2 efflux dynamics after land use change from a natural forest to Moso bamboo plantations in subtropical China. Forest Ecology Management, 262(6): 1131-1137. [DOI:10.1016/j.foreco.2011.06.015]
25. Lourenço, A. and H. Pereira. 2017. Compositional Variability of Lignin in Biomass. A Chapter in Lignin-Trends and Applications. IntechOpen. [DOI:10.5772/intechopen.71208]
26. Mahdavi, S.Kh., A. Azaryan, M.R. Javadi and J. Mahmoudi. 2016. Effects of flood spreading on some physic-chemical properties and soil fertility, Case study: Band-E Alikhan area, Varamin. Journal of Rangeland, 10(5): 68-81 (In Persian).
27. Melillo, J.M., J.D. Aber and J.F. Muratore. 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology, 63: 621-626. [DOI:10.2307/1936780]
28. Minasny, B., B.P. Malone, A.B. McBratney, D.A. Angers, D. Arrouays, A. Chambers, V. Chaplot, Z.S. Chen, K. Cheng, B.S. Das, D.J. Field, A. Gimona, C.B. Hedley, S.Y. Hong, B. Mandal, B.P. Marchant, M. Martin, B.G. McConkey, V.L. Mulder, S. O'Rourke, A.C. Richer-de-Forges, I. Odeh, J. Padarian, K. Paustian, G. Pan, L. Poggio, I. Savin, V. Stolbovoy, U. Stockmann, Y. Sulaeman, C.C. Tsui, T.G. Vågen, B. van Wesemael and L. Winowiecki. 2017. Soil carbon 4 per millennium. Geoderma, 292: 59-86. [DOI:10.1016/j.geoderma.2017.01.002]
29. Mohammadi Samani, K., H. Jalilvand, A. Salehi, M. Shahabi and A. Galij. 2006. Investigation of the relationship between some soil chemical properties and several tree types of Zagros Forests (Case study of Marivan), Iranian Journal of Forest and Poplar Research, 14: 148-158 (In Persian).
30. Moslemi, H. 2018. Impact assessment of flood spreading project on some physicochemical properties and soil fertility, case study: Tigh Syah-Hashtbandi floodwater spreading in the Hormozgan Province. Journal of Watershed Engineering and Management, 10(1): 71-80 (In Persian).
31. Nelson, D.W. and L.P. Sommers. 1986. Total carbon, organic carbon and organic matter, p 539-579. In: Page, A.L. (ed.), Methods of Soil Analysis: Part 2, Agronomy Handbook No 9, American Society of Agronomy and Soil Science Society of America, Madison, WI. [DOI:10.2134/agronmonogr9.2.2ed.c29]
32. Nobakht, A.A., M.R. Pourmajidian, S.M. Hojjati and A. Fallah. 2011. A comparison of soil carbon sequestration in hardwood and softwood monocultures (Case study: Dehmian forest management plan, Mazindaran). Iranian Journal of Forest, 3(1): 13-23 (In Persian).
33. Oeba, V.O., S.C.J. Otor, J.B. Kung'u, M.N. Muchiri and L. Mahamane. 2018. Soil Carbon Sequestration Differentials among Key Forest Plantation Species in Kenya: Promising Opportunities for Sustainable Development Mechanism. Agriculture, Forestry and Fisheries, 7(3): 65-74. [DOI:10.11648/j.aff.20180703.11]
34. Olsson, B.A., K. Hansson, T. Persson, E. Beuker and H.S. Helmisaari. 2012. Heterotrophic respiration and nitrogen mineralisation in soils of Norway spruce, Scots pine and silver birch stands in contrasting climates. For Ecolology Management, 269: 197-205. [DOI:10.1016/j.foreco.2011.12.031]
35. Padyab, M., S. Feyznia and A. Shafie. 2013. Assessment of the effects of floodwater spreading on soil fertility (Case study: Gachsaran floodwater spreading station). Iranian Journal of Range and Desert Research, 20(1): 161-171 (In Persian).
36. Parvizi, Y., M. Gorji, M. Mahdian and M. Omid. 2010. Sensitivity analysis for determining priority of factors controlling SOC content in semiarid condition of west of Iran. World Academy of Science, Engineering and Technology‎, 71: 927-931.
37. Pato, M., A. Salehi, GH. Zahedi Amiri and A. Banj Shafiei. 2017. Soil carbon stock and its relationship with physical and chemical characteristics in soil of different land-use in Zagros region. Journal of Forest and Wood Products (JFWP) Iranian Journal of Natural Resources, 69(4): 747-756 (In Persian).
38. Poeplau, C., A. Don, L. Vesterdal, J. Leifeld, B. Van Wesemael, J. Schumacher and A. Gensior. 2011. Temporal dynamics of soil organic carbon after land-use change in the temperate zone carbon response functions as a model approach. Global Change Biology, 17(7): 2415-2427. [DOI:10.1111/j.1365-2486.2011.02408.x]
39. Puladi, N., M.A. Delavar, A. Golchin and A. Mosavi Koper. 2013. Effect of alder and popular plantation on soil quality and carbon sequestration (a case study: Safrabasteh Popular Experimental Station). Iranian Journal of Forest and Poplar Research, 21(2): 286-299 (In Persian).
40. Rahmani, R. and H. Zare Mayvan. 2003. Diversity and social structure of soil invertebrates (earthworms, other insects and larvae) in beech, hornbeam and oak-hornbeam forest types. Journal of Iranian Natural Resources, 56(4): 425-436 (In Persian).
41. Rice, C.W. 2000. Soil organic C and N in rangeland soils under elevation CO2 and land management. Proceedings of the Advances in Terrestrial Ecosystem Carbon Inventory, Measurements and Monitoring Conference, October 3-5, 2000, Raleigh, North Carolina, 15-24 pp.
42. Richards, L.A. 1954. Diagnosis and Improvement of Saline and Alkali Soils. United States Department of Agriculture, Washington, DC. [DOI:10.1097/00010694-195408000-00012]
43. Robson, A.D., K. Snowball and A.D. Robson. 1989. Soil acidity and plant growth. Soil Science, 150(6): 903-918. [DOI:10.1097/00010694-199012000-00013]
44. Saiz, G., M.I. Bird, T. Domingues, F. Schrodt, M. Schwarz, T.R. Feldpausch, E. Veenendaal, G. Djagbletey, F. Hien and H. Compaoré. 2012. Variation in soil carbon stocks and their determinants across a precipitationgradient in West Africa.Glob. Change Biology, 18: 1670-1683. [DOI:10.1111/j.1365-2486.2012.02657.x]
45. Salehi, A. and E. Noormohammadi. 2013. Effect of grazed and surface scrafication on soil properties and regeneration in centeral Zagros forests (Case study: Aleshtar city forests). Journal of Forest and Wood Products, 65(3): 315-325 (In Persian).
46. Sarreshtehdari, A. 2002. The Impact of a Flood Spreading Project on Soil Properties A case study in Iran, Kerman Province, Bam, Abbarik. Thesis submitted to the International Institute for Geo-Information Science & Earth Observation (ITC), Enschede the Netherlands, 73 pp.
47. Sayad, E., S.M. Hosseini, M. Akbarinia and S.H. Gholami. 2007. Comparison of soil properties in pure plantations of Populus eurmaercana (DODE) guinier and mixed with Alnus subcordata c.a. Mey. Journal of Environmental Studies, 33(41): 77-84 (In Persian).
48. Selvaraj, S., V. Duraisamy, Z. Huang, F. Guo and X. Ma. 2017. Influence of long-term successive rotations and stand age of Chinese fir (Cunninghamia lanceolata) plantations on soil properties. Geoderma, 306: 127-134. [DOI:10.1016/j.geoderma.2017.07.014]
49. Sheidai Karkaj, E., A. Sepehry, H. Barani and J. Motamedi. 2017. Soil organic carbon reserve relationship with some soil properties in East Azerbaijan rangelands. Journal of Rangeland, 11(2): 125-138 (In Persian).
50. Tesfaye, M.A., F. Bravo, R. Ruiz-Peinado, V. Pando and A. Bravo-Oviedo. 2016. Impact of changes in land use, species and elevation on soil organic carbon and total nitrogen in Ethiopian Central Highlands. Geoderma, 261: 70-79. [DOI:10.1016/j.geoderma.2015.06.022]
51. Varamesh, S., S.M. Hosseini, N. Abdi and M. Akbarinia. 2010. Increment of soil carbon sequestration due to forestation and its relation with some physical and chemical factors of soil. Iranian Journal of Forest, 2(1): 25-35 (In Persian).
52. Wang, Q., Y. Bai, H. Gao, J. He, H. Chen, R.C. Chesney, N.J. Kuhn and H. Li. 2008. Soil chemical properties and microbial biomass after 16 years of no- tillage farming on the Loess Plateau, China. Geoderma, 144: 502-508. [DOI:10.1016/j.geoderma.2008.01.003]
53. Yang, M., D. Yang and X. Yu. 2018. Soil microbial communities and enzyme activities in sea-buckthorn (Hippophae rhamnoides) plantation at different ages. PLOS ONE, 13(1): e0190959. [DOI:10.1371/journal.pone.0190959]
54. Yazdian, A.R. and S.A. Kowsar. 2003. The Agha Jari Formation: A potential source of ammonium and nitrate nitrogen fertilizers. Journal of Agricultural Sciences and Technology, 5: 153-163.
55. Yuan, B.C. and D.X. Yue. 2012. Soil microbial and enzymatic activities across a chronosequence of Chinese pine plantation development on the Loess Plateau of China. Pedosphere, 22(1): 1-12. [DOI:10.1016/S1002-0160(11)60186-0]
56. Zarafshar, M., S. Bazot, M. Matinizadeh, S.K. Bordbar, M.J. Rousta, Y. Kooch, K. Enayati, A. Abbasi and M. Negahdarsaber. 2020. Do tree plantations or cultivated fields have the same ability to maintain soil quality as natural forests? Applied Soil Ecology, 151: 1-10. [DOI:10.1016/j.apsoil.2020.103536]
57. Zehtabian, Gh. and Gh. Rahimzadeh. 2010. Evaluating the effect of floodwater spreading on soil permeability, case study: Mousian Ilam Province. Journal of Natural Geography, 3(9): 15-22 (In Persian).
58. Zhang J., X. Wang and J. Wang. 2014. Impact of land use change on profile distributions of soil organic carbon fractions in the Yanqi Basin. Catena, 115: 79-84. [DOI:10.1016/j.catena.2013.11.019]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به بوم‏شناسی جنگل‏های ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Ecology of Iranian Forest

Designed & Developed by : Yektaweb