دوره 8، شماره 16 - ( پاییز و زمستان 1399 )                   جلد 8 شماره 16 صفحات 114-103 | برگشت به فهرست نسخه ها


XML English Abstract Print


گروه مهندسی فضای سبز، دانشگاه آزاد اسلامی واحد ملایر، ملایر، ایران
چکیده:   (2310 مشاهده)
   اندازه ­گیری زی­توده برای ارزیابی ساختار و شرایط رویشگاه از نظر بوم­ شناختی و اقتصادی مهم است و می­ تواند مبنای برآورد کربن ترسیب شده در اندام­ های مختلف درخت باشد. به ­منظور برآورد میزان زی­توده در توده­ های بهره ­برداری شده و شاهد (حفاظت شده) راش، دو پارسل 511 و 514 در جنگل صفارود رامسر انتخاب و با آماربرداری صددرصد از درختان سرپا در محدوده 25/6 هکتاری در هر پارسل، مشخصه­ های کمی شامل قطر برابرسینه، ارتفاع درخت، ارتفاع و قطر تاج مورد اندازه­ گیری قرار گرفتند. میزان زی­توده با استفاده از روش برداشت مستقیم (قطع و توزین) در مورد درختان نشانه ­گذاری شده و روابط آلومتریک برای کل توده استفاده شد. در پارسل بهره ­برداری شده 15 درخت از کل درختان قطع شده به شکل تصادفی، انتخاب و شاخه­ زنی و استربندی شدند. سه دیسک از ابتدا، وسط و انتهای هر تنه انتخاب و برش داده شد. در مورد شاخه­ ها، یک استر از هر پایه مشخص شد. به­ منظور تعیین وزن خشک (زی­توده)، دیسک­ ها و شاخه­ ها به­ مدت 48 ساعت در دمای 80 درجه سانتی­ گراد در کوره نگهداری و سپس توزین شدند. بر اساس نتایج روابط آلومتریک میانگین میزان ذخیره زی­توده در منطقه بهره ­برداری شده و شاهد به ­ترتیب 18/222 و 58/311 تن در هکتار برآورد شد که با توجه به نتایج آزمون t در سطح اطمینان 95 درصد از اختلاف معنی­ داری برخوردار بودند. نتایج حاکی از آن است که دخالت­ های صورت گرفته به ­ویژه برداشت درختان قطور منجر به کاهش تعداد در طبقات قطری بالاتر و میانگین قطر و ارتفاع توده­ های جنگلی و در نتیجه کاهش حجم و زی­توده در منطقه بهره ­برداری شده، گردیده است.
متن کامل [PDF 879 kb]   (686 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1398/5/26 | پذیرش: 1398/8/29 | انتشار: 1399/9/25

فهرست منابع
1. Alvarez, E., A. Duque and J. Saldarriaga. 2012. Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. Forest Ecology and Management, 267: 297-308. [DOI:10.1016/j.foreco.2011.12.013]
2. Daryaei, A. and H. Sohrabi. 2015. Aboveground biomass estimation of small diameter trees of carpinus betulus, Fagusorientalis and Parrotio persicaby using power regression model. J. of Wood & Forest Science and Technology, 22: 137-150 )In persian(.
3. Fatemi Talab, S.R., A. Mataji and S. Babai Kafaki. 2012. Determination of stand dynamic and its relationship with understory biodiversity in managed and unmanaged stands of Beech forests ) Case study: Safarud forest(. Iranian Journal of Forest, 4: 277-288 )In persian(.
4. Fridman, J. 2000. Conservation of forest in Sweden: a strategic ecological analysis. Biol. Conserv, 96: 95-103. [DOI:10.1016/S0006-3207(00)00056-2]
5. Honda, Y., H. Yamamoto and K. Kajiwara. 2000. Biomass Information in Central Asia. Center for Environmental Remote Sensing, 263: 1-33.
6. Istrefi. E., E. Toromani, N. Collaku and B. Thaci. 2019. Allometric biomass equations for young trees of four broadleaved species in Albani. New Zealand Journal of Forestry Science, 49: 1-14. [DOI:10.33494/nzjfs492019x51x]
7. Ju, W. and J. Chen. 2007. Future carbon balance of china's forest under climate change and incrasing Co2. Journal of Environmental Management, 86: 11-18.
8. Khademi, A., S. Babaie and A. Mataji. 2010. The role of coppice oac stand in carbon storage Co2 uptak )Case study: Khalkhal, Iran(. Iranian Journal of Forest and Poplar Research, 18: 252-263 )In persian(.
9. Kirby, R. 2007. Variation in carbon storage among tree species; implications for the management of a small- scale carbon sink project. Forest Ecology and Management, 93: 23-31.
10. Lelli, C., H. Henrik Bruun, A. Chiarucci and D. Donati. 2019. Biodiversity response to forest structure and -management: Comparing species richness, conservation relevant species and functional diversity as metrics in forest conservation. Forest Ecology and Management, 432: 707-717. [DOI:10.1016/j.foreco.2018.09.057]
11. Loretta, G., M. Luciano, F. Anna Rita, B. Andrea and D. Valter. 2018. Carbon sequestration capability of Fagus sylvatica forests developing in the Majella National Park )Central Apennines, Italy(. Journal of Forestry Research, 4: 1-9.
12. Lotfalian, M. 2012. Logging. 1st edn. AyiiZh Press, Thran, Iran, 488 pp.
13. Navar, J. 2009. Allometric equations for tree species and carbon stocks for forests of northwestern Mexico. Forest Ecology and Management, 257: 427-434. [DOI:10.1016/j.foreco.2008.09.028]
14. Peichl, M. 2006. Above and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests. Agricultural and Forest Meteorology, 140: 51-63. [DOI:10.1016/j.agrformet.2006.08.004]
15. Poorter, H., M. Jagodzinski, R. Ruiz-Peinado, V. Usoltsev and L. Sack. 2015. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continets. New phytologist, 208: 736-749. [DOI:10.1111/nph.13571]
16. Pour-Gholi, Z., F. Iran-Dost, S. Sefidi, Kh. Sagheb-Talebi and F. Keivan-Behjo. 2019. Investigating the structure of beech stands in the gap making phase (Case study: Asalem forests, Guilan). Ecology of Iranian Forests, 13: 29-35 )In persian(. [DOI:10.29252/ifej.7.13.29]
17. Rousseau, L., L. Venier, I. Ubin and B. Berthiaume. 2019. Woody biomass removal in harvested boreal forest leads to a partial functional homogenization of soil mesofaunal communities relative to unharvested forest. Oil Biology and Biochemistry, 133: 129-136. [DOI:10.1016/j.soilbio.2019.02.021]
18. Safari, M, K. Sefidi, A. Alijanpoor and M. Reza Elahian. 2018. Study of natural regeneration in Quercus macranthera stands in different physiographic conditions in Arasbaran Forests. Ecology of Iranian Forests, 12: 1-8 )In persian(. [DOI:10.29252/ifej.6.12.1]
19. Sawadogo, L., P. Savadogo, D. Tiveau, S. Dayamba and S. Guinko. 2010. Allometric prediction of above-ground biomass of eleven woody tree species in the Sudanian savanna-woodland of West Africa. J. For. Res, 21: 475-481. [DOI:10.1007/s11676-010-0101-4]
20. Sohrabi, H. and H. Shirvani. 2012. Allometric equations for estimating standing biomass of Atlantic Pistache )Pistacia atlantica var. mutica( in Khojir National Park. Iranian Journal of Forest, 4: 55-64 )In persian(.
21. Takafumi, H. and T. Hiura. 2009. Effects of disturbance history and environmental factor on diversity and productivity of understory vegetation in a cool-temperate forest in Japan, Journal of Forest Ecology and Management, 257: 843-857. [DOI:10.1016/j.foreco.2008.10.020]
22. Vallet, P. 2009. Species substitution for carbon storage: Sessile oak versus Corsican pine in France as a case study. Forest Ecology and Management, 257: 1314-1323. [DOI:10.1016/j.foreco.2008.11.034]
23. Vejpustkova, M., D. Zahradník, T. Cihák and V. Sramek. 2015. Models for predicting aboveground biomass of European beech)Fagus sylvatica L(. in the Czech Republic. Journal of Forest Science, 61: 45-54. [DOI:10.17221/100/2014-JFS]
24. Zobeiri, M. 2003. Forest Biometry. 1st edn, Tehran University Press, Thran, Iran, 389 pp.

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.