دوره 8، شماره 16 - ( پاییز و زمستان 1399 )                   جلد 8 شماره 16 صفحات 71-60 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kooch Y, Ehsani S. (2020). The Effect of Different Land Uses on New Indices of Soil Quality in Central Alborz Region. ifej. 8(16), 60-71. doi:10.52547/ifej.8.16.60
URL: http://ifej.sanru.ac.ir/article-1-303-fa.html
کوچ یحیی، احسانی سمیه. تأثیر کاربری های مختلف بر شاخص های نوین کیفیت خاک در منطقه البرز مرکزی بوم شناسی جنگل های ایران (علمی- پژوهشی) 1399; 8 (16) :71-60 10.52547/ifej.8.16.60

URL: http://ifej.sanru.ac.ir/article-1-303-fa.html


دانشگاه تربیت مدرس، نور، دانشکده منابع طبیعی و علوم دریایی
چکیده:   (2680 مشاهده)
کاربری­ های مختلف اثرات متفاوتی بر تغییرپذیری ویژگی­ های خاک دارند. پژوهش حاضر با هدف ارزیابی اثر کاربری­ های جنگل طبیعی، جنگل­ کاری سوزنی ­برگ و اراضی مرتعی منطقه البرز مرکزی بر شاخص­ های نوین کیفیت خاک (لایه­ بندی ماده آلی، شاخص مدیریت کربن و فعالیت­ های زیستی) صورت گرفت. بدین ­منظور، هشت نمونه لایه آلی (لاشبرگ) و معدنی خاک (عمق 15-0 سانتی­متری و در سطح 25 سانتی­متر ×25 سانتی­متر) از هر یک از عرصه ­های جنگل طبیعی (راش آمیخته با ممرز)،جنگل ­کاری نوئل، جنگل­ کاری کاج جنگلی و عرصه مرتعی در منطقه جواهرده شهرستان رامسر برداشت و به آزمایشگاه انتقال داده شد. مطابق با نتایج، حداقل مقدار مشخصه لایه­ بندی ماده آلی (45/1) و بیشترین مقادیر زی­توده ریزریشه (03/91 گرم بر متر مربع)، تعداد و زی­توده کرم ­های خاکی (به ­ترتیب 75/1 تعداد بر متر مربع و 84/22 میلی­ گرم بر متر مربع)، جمعیت نماتد خاک (13/595 در 100 گرم خاک) و زی­توده میکروبی نیتروژن (94/24 میلی­گرم بر کیلوگرم) به جنگل طبیعی اختصاص داشت. بیشترین و کمترین مقدار تنفس میکروبی به­ترتیب در عرصه مرتعی و جنگل طبیعی (20/0 و 10/0 میلی­ گرم دی ­اکسیدکربن بر گرم در یک روز) مشاهده شد. بالاترین مقدار زی­توده میکروبی کربن (25/242 میلی­ گرم بر کیلوگرم) به عرصه مرتعی و بالاترین مقدار مشخصه معدنی ­شدن نیتروژن خاک (03/27 میلی­ گرم نیتروژن بر کیلوگرم خاک) به جنگل طبیعی تعلق داشت. شاخص مدیریت کربن تفاوت آماری معنی­ داری را در بین عرصه­ های مورد مطالعه نشان نداد. مطابق با نتایج تحلیل مؤلفه­ های اصلی، تغییرات مشخصه ­های لایه­ بندی ماده آلی، کربن و فعالیت­ های زیستی خاک در ارتباط مستقیم با تغییرپذیری مشخصه­ های فیزیکوشیمیایی خاک تحت ­تأثیر کاربری­ های مختلف اراضی است. نتایج این پژوهش بیانگر اهمیّت بسیار برجسته حفاظت از جنگل­های طبیعی آمیخته پهن­برگ موجود به­ منظور حفظ کیفیت خاک است.
 
متن کامل [PDF 1153 kb]   (690 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اکولوژی جنگل
دریافت: 1398/1/15 | پذیرش: 1398/3/5 | انتشار: 1399/9/25

فهرست منابع
1. Akala, V.A. and R. Lal. 2001. Soil organic carbon pools and sequestration rates in reclaimed minesoils in Ohio. Journal of Environmental Quality, 30(4): 2098-2104. [DOI:10.2134/jeq2001.2098]
2. Ali Asgharzad, N. 2010. Laboratory Methods in Soil Biology, Tabriz University Press, 522 pp.
3. Anonymous. 2011. Javaherdeh-Ramsar Planning of Forest. The Forest and Rangelands Organization, Iran 274 pp.
4. Asadian, M., S.M. Hojjati, M.R. Poormajidian and A. Fallah. 2013. The effect of differernt land use on soil quality in Alandan forest of Sari. Iranian Journal of Natural Geoghraphical Resaerch, 45(5): 65-76.
5. Banegas, N., M. Maza, E. Viruel, J. Nasca, F. Canteros, R. Corbella and D.A. Dos Santos. 2019. Long-term impact of grazing and tillage on soil quality in the semi-arid Chaco (Argentina). Spanish Journal of Soil Science, 9(2): 24-41. [DOI:10.3232/SJSS.2019.V9.N1.02]
6. Bayranvand, M. and Y. Kooch. 2017. The effect of broad-leaved tree species on abundance and diversity of earthworms in the flat forest ecosystem. Journal of Soil Biology, 4(1): 15-26.
7. Binkley, D. and R. Fisher. 2012. Ecology and Management of Forest Soils. John Wiley & Sons.
8. Blair, G.J., R.D. Lefroy and L. Lisle. 1995. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agriculture Research, 46(7): 1459-466. [DOI:10.1071/AR9951459]
9. Burton, J., C. Chen, Z. Xu and H. Ghadiri. 2010. Soil microbial biomass, activity and community composition in adjacent native and plantation forests of subtropical Australia. Journal of Soils and Sediments, 10(7): 1267-1277. [DOI:10.1007/s11368-010-0238-y]
10. Cardinale, B.J., J.P. Wright, M.W. Cadotte, I.T. Carroll, A. Hector, D.S. Srivastava and J.J. Weis. 2007. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proceedings of the National Academy of Sciences, 104(46): 18123-18128. [DOI:10.1073/pnas.0709069104]
11. Chen, T. H., C.Y. Chiu and G. Tian. 2005. Seasonal dynamics of soil microbial biomass in coastal sand dune forest. Pedobiologia, 49(6): 645-653. [DOI:10.1016/j.pedobi.2005.06.005]
12. Cusack, D.F., W.L. Silver, M.S. Torn, S.D. Burton and M.K. Firestone. 2011. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests. Ecology, 92(3): 621-632. [DOI:10.1890/10-0459.1]
13. Emily, E.O., A. Bradford and S.A. Wood. 2019. Global meta-analysis of the relationship between soilorganic matter and crop yields. Soil, 5(2): 15-32. [DOI:10.5194/soil-5-15-2019]
14. Franzluebbers, A.J. and J.A. Stuedemann. 2005. Bermudagrass management in the Southern Piedmont USA: VII. Soil-profile organic carbon and total nitrogen. Soil Science Society of America Journal, 69(3): 1455-1462. [DOI:10.2136/sssaj2004.0142]
15. Franzluebbers, A.J. and J.A. Stuedemann. 2009. Soil-profile organic carbon and total nitrogen during 12 years of pasture management in the Southern Piedmont USA. Agriculture, Ecosystems and Environment, 129(6): 28-36. [DOI:10.1016/j.agee.2008.06.013]
16. Ghazanshahi, J. 2006. Soil and plant analysis, Hooma Publications, 272 pp.
17. Gil-Sotres, F., C. Trasar-Cepeda, M.C. Leirós and S. Seoane. 2005. Different approaches to evaluating soil quality using biochemical properties. Soil Biology and Biochemistry, 37(5): 877-887. [DOI:10.1016/j.soilbio.2004.10.003]
18. Gmach, M.R., B.O. Dias, C.A. Silva, J.C. A. Nóbrega, J.F. Lustosa-Filho and M. Siqueira-Neto. 2018. Soil organic matter dynamics and land-use change on Oxisols in the Cerrado, Brazil. Geoderma Regional, 14: e00178. [DOI:10.1016/j.geodrs.2018.e00178]
19. Hoogmoed, M., S.C. Cunninghama, J.P. Bakera, P. Beringerd and T.R. Cavagnaro. 2014. Is there more soil carbon under nitrogen-fixing trees than under non-nitrogen-fixing trees in mixed-species restoration plantings? Agriculture, Ecosystems and Environment, 188(4): 80-84. [DOI:10.1016/j.agee.2014.02.013]
20. Jacob, M., K. Viedenz, A. Polle and F.M. Thomas. 2010. Leaf litter decomposition in temperate deciduous forest stands with a decreasing fraction of beech (Fagus sylvatica). Oecologia, 164(4): 1083-1094. [DOI:10.1007/s00442-010-1699-9]
21. Jafari Haghighi, M. 2003. Methods of Soil Analysis. Second edition, Neda Zahi Publications.
22. Janion-Scheepers, C., J. Measey, B. Braschler, S.L. Chown, L. Coetzee, J.F. Colville, J. Dames, A.B. Davies, S.J. Davies, A.L. Davis and A.S. Dippenaar-Schoeman. 2016. Soil biota in a megadiverse country: Current knowledge and future research directions in South Africa. Pedobiologia, 59: 129-174. [DOI:10.1016/j.pedobi.2016.03.004]
23. Kang, H., H. Gao, W. Yu, Y. Yi, Y. Wang and M. Ning. 2018. Changes in soil microbial community structure and function after afforestation depend on species and age: Case study in a subtropical alluvial Island. Science of the Total Environment, 625(8): 1423-1432. [DOI:10.1016/j.scitotenv.2017.12.180]
24. Kooch, Y., B. Samadzadeh and S.M. Hosseini. 2017. The effects of broad-leaved tree species on litter quality and soil properties in a plain forest stand. Catena, 150(3): 223-229. [DOI:10.1016/j.catena.2016.11.023]
25. Kooch, Y., N. Moghimian, M. Bayranvand and G. Alberti. 2016. Changes of soil carbon dioxide, methane, and nitrous oxide fluxes in relation to land use/cover management. Environmental Monitoring and Assessment, 188(6): 1-12. [DOI:10.1007/s10661-016-5342-z]
26. Kooch, Y., R. Sanji and M. Tabari. 2018. Increasing tree diversity enhances microbial and enzyme activities in temperate Iranian forests. Trees, DOI: 10.1007/s00468-018-1674-3. [DOI:10.1007/s00468-018-1674-3]
27. Kooch, Y., R. Sanji and M. Tabari. 2019. The effect of vegetation change in C and N contents in litter and soil organic fractions of a Northern Iran temperate forest. Catena, 178(6): 32-39. [DOI:10.1016/j.catena.2019.03.009]
28. Mao, R., D.H. Zeng, A.G. Yan, D. Yang, L.J. Li and Y.X. Liu. 2010. Soil microbiological and chemical effects of a nitrogen-fixing shrub in poplar plantations in semi-arid region of Northeast China. European Journal of Soil Biology, 46(5): 325-329. [DOI:10.1016/j.ejsobi.2010.05.005]
29. Mc Cune, B. and M.J. Mefford. 1999. PC-ORD. Multivariate Analysis of Ecological Data. Version 5.0. MjM Software, Gleneden Beach, Oregon, U.S.A.
30. Mohammad Nejad kiasari, Sh., K. Sagheb Talebi and R. Rahmani. 2011. Comparison of the invertebrate diversity in natural forest and plantations. Journal of Natural Resources Science and Technology, 11(4): 55-69.
31. Moslehi, M. and J. Nazari. 2012. Interaction of earthworms, trees, and its effects on forest soils. Man and the Environment, 20(1): 108-113.
32. Neatrour, M.A., R.H. Jones and S.W. Golladay. 2005. Correlations between soil nutrients availability and fine- root biomass at two spatial scales in forested wetlands with contrasting hydrological regimes, NRC Research Press, 35(3): 2934-2941. [DOI:10.1139/x05-217]
33. Neher, D.A., J. Wu, M.E. Barbercheck and O. Anas. 2005. Ecosystem type affects interpretation of soil nematode community measures. Applied Soil Ecology, 30(1): 47-64. [DOI:10.1016/j.apsoil.2005.01.002]
34. Neirynck, J., S. Mirtcheva, G. Sioen and N. Lust. 2000. Impact of Tilia platyphyllos Scop., Fraxinus excelsior L., Acer pseudoplatanus L., Quercus robur L. and Fagus sylvatica L. on earthworm biomass and physico-chemical properties of a loamy topsoil. Forest Ecology and Management, 133(3): 275-286. [DOI:10.1016/S0378-1127(99)00240-6]
35. Page, A.L., R.H. Miller and D.R. Jeeny. 1992. Methods of soil Analysis: part1. Physical proerpteis. SSSA Pub., Madison, 1750 pp.
36. Patra, S., S. Julich, K. Feger, M.L. Jat, P.C. Sharma and K. Schwärzel. 2019. Effect of conservation agriculture on stratification of soil organic matter under cereal-based cropping systems. Archives of Agronomy and Soil Science, DOI: 10.1080/03650340.2019.1588462. [DOI:10.1080/03650340.2019.1588462]
37. Qi, G., Q. Wang, W. Zhou, H. Ding, X. Wang, L. Qi and L. Dai. 2011. Moisture effect on carbon and nitrogen mineralization in topsoil of Changbai Mountain, Northeast China. Journal of Forest Science, 57(8): 340-348. [DOI:10.17221/56/2010-JFS]
38. Rahman, M.H. 2017. Distribution and stratification of carbon in irrigated calcareous soil under rice-based cropping pattern in Bangladesh. International Journal of Soil Science, 12(6): 120-127. [DOI:10.3923/ijss.2017.120.127]
39. Raiesi, F. and E. Asadi. 2006. Soil microbial activity and litter turnover in native grazed and ungrazed rangelands in a semiarid ecosystem. Biology and Fertility of Soils, 43(1): 76-82. [DOI:10.1007/s00374-005-0066-1]
40. Salamon, J.A., M. Schaefer, J. Alphei, B. Schmid and S. Scheu. 2004. Effects of plant diversity on Collembola in an experimental grassland ecosystem. Oikos, 106(6): 51-60. [DOI:10.1111/j.0030-1299.2004.12905.x]
41. Salman Pour, A., M.H. Salehi and J. Mohammadi. 2016. Soil quality study using labile carbon and carbon management index in agricultural lands of Nizar District, Fars Province. Water and Soil Journal (Agricultural Science and Technology), 30(3): 940-930.
42. Sayer, E.J., E.V.J. Tanner and A.W. Cheesman. 2006. Increased litterfall changes fine root distribution in a moist tropical forest. Plant and Soil, 281(1): 5-13. [DOI:10.1007/s11104-005-6334-x]
43. Sheikh Hasani, A.R. and F. Nourbakhsh. 2007. Effect of soil type and plant residues on net nitrogen mineralization. Iranian Journal of Pajohesh and Sazandegi, 75(3): 128-133.
44. Smith, R.G., C.P. McSwiney, A.S. Grandy, P. Suwanwaree, R.M. Snider and G.P. Robertson. 2008. Diversity and abundance of earthworms across an agricultural land-use intensity gradient. Soil and Tillage Research, 100(1): 83-88. [DOI:10.1016/j.still.2008.04.009]
45. Tajik, F. 2004. Evaluation of soil aggregate stability in some regions of iron. Jwss - Isfahan University of Technology, 8(1): 107-123.
46. Tavakoli, M. 2018. Detritivores diversity in relation to litter and soil quality characters in degraded and reclaimed forest areas in Hyrcanian region. M. Sc. thesis of Forestry, Tarbiat Modares Unievrsity, 168 pp.
47. Thomas, K.D. and C.E. Prescott. 2000. Nitrogen availability in forest floors of three tree species on the same site: the role of litter quality. Canadian Journal of Forest Research, 30(11): 1698-1706. [DOI:10.1139/x00-101]
48. Wang, Q.K. and S.L. Wang. 2007. Soil organic matter under different forest types in Southern China. Geoderma, 142(4): 349-356. [DOI:10.1016/j.geoderma.2007.09.006]
49. Yan, E.R., X.H. Wang and X.Y. Chen. 2007. Impacts of evergreen broad-leaved forest degradation on soil nutrients and carbon pools in tiantong, Zhejiang province. Acta Ecologica Sinica, 26(4):706-714.
50. Yan, E.R., X.H. Wang, J.J. Huang, G.Y. Li and W. Zhou. 2008. Decline of soil nitrogen mineralization and nitrification during forest conversion of evergreen broad-leaved forest to Plantations in the subtropical area of eastern China. Biogeochemistry, 89(2): 239-251. [DOI:10.1007/s10533-008-9216-5]
51. Yang X., W. Ren, B. Sun and S. Zhang. 2012. Effects of contrasting soil management regimes on total and labile soil organic carbon fractions in a loess soil in China. Geoderma, 177(5): 49-56. [DOI:10.1016/j.geoderma.2012.01.033]
52. Yousefi, A. and L. Darvishi. 2013. Soil changes induced by hardwood and coniferous tree plantation establishment: Comparison with natural forest soil at Berenjestanak lower land forest in north of Iran. International Journal of Advanced Biological and Biomedical Research, 1(4): 432-449.
53. Yuan, Z.Y., F.S. Chen, D.H. Zeng, Q. Zhao and G.S. Chen. 2008. Soil inorganic nitrogen and microbial biomass carbon and nitrogen under Pine plantations in Zhanggutai Sandy Soil. Pedosphere, 18(6): 775-784. [DOI:10.1016/S1002-0160(08)60073-9]
54. Yusheng, Y., G. Jianfen, C. Guangshui, H. Zongming and X. Jinsheng. 2003. Effect of slash burning on nutrient removal and soil fertility in Chinese fir and evergreen broadleaved forests of midsubtropical China. Pedosphere, 13(1): 87-96.
55. Zhang, M., W.J. Liang and X.K. Zhang. 2012. Soil nematode abundance and diversity in different forest types at changbai mountain, China. Zoological Studies, 51(5): 619-626.
56. Zhang, Q., J.R.T. Yang, T. Koide, H. Li and J. Chu. 2017. A meta-analysis of soil microbial biomass levels from established tree plantations over various land uses, climates and plant communities. Catena, 150(4): 256-260. [DOI:10.1016/j.catena.2016.11.028]
57. Zhao, S., K. Li, W. Zhou, S. Qiu, S. Huang and P. He. 2016. Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north-central China. Agriculture, Ecosystems and Environment, 216(3): 82-88. [DOI:10.1016/j.agee.2015.09.028]
58. Zhao, X., J.F. Xue, X. Q. Zhang, F.L. Kong, F. Chen, R. Lal and H.L. Zhang. 2015. Stratification and storage of soil organic carbon and nitrogen as affected by tillage practices in the North China plain. Plos One, DOI:10.1371/Journal.Pone.0128873. [DOI:10.1371/journal.pone.0128873]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به بوم‏شناسی جنگل‏های ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Ecology of Iranian Forest

Designed & Developed by : Yektaweb