دوره 6، شماره 11 - ( بهار و تابستان 1397 )                   جلد 6 شماره 11 صفحات 75-61 | برگشت به فهرست نسخه ها

XML English Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Pourahmad M, Oladi J, Fallah A. Detection of Tree Species in Mixed Broad-Leaved Stands of Caspian Forests Using UAV Images (Case study: Darabkola Forest). ifej 2018; 6 (11) :61-75
URL: http://ifej.sanru.ac.ir/article-1-240-fa.html
پوراحمد میلاد، اولادی جعفر، فلاح اصغر. شناسایی گونه‌های درختی در توده‌های پهن‌برگ آمیخته جنگل‌های خزری با استفاده از تصاویر پهپاد (مطالعه موردی: جنگل دارابکلا) . بوم شناسی جنگل های ایران (علمی- پژوهشی). 1397; 6 (11) :61-75

URL: http://ifej.sanru.ac.ir/article-1-240-fa.html

دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری
چکیده:   (6612 مشاهده)
تصاویر پهپاد، با توان تفکیک مکانی بالا، یک منبع اطلاعاتی باارزش برای تهیه نقشه پوشش زمین و اطلاعات موضوعی به­ ویژه تشخیص گونه­ های درختی هستند. هدف از این تحقیق بررسی قابلیت تصاویر پهپاد و روش شیءپایه در تشخیص گونه ­های درختی در جنگل­ های پهن‌برگ خزری است. به‌این منظور بخشی از پارسل 24 در سری یک دارابکلای مازندران انتخاب شد. نقشه واقعیت زمینی موقعیت گونه­ های غالب از طریق ثبت دقیق با الگوریتم تعیین مختصات جغرافیایی با استفاده از فاصله و آزیموت در نرم‌افزار متلب تهیه شد. پس از پردازش­ های مناسب بر روی تصاویر، طبقه بندی به روش شیء­پایه بر روی مجموعه تصاویر در سه ارتفاع پروازی 100، 75 و 55 متری به دو صورت طبقه‌بندی یک مرحله‌ای و طبقه‌بندی سلسله‌مراتبی انجام شد. در روش شیء­پایه از فن نزدیک­ترین همسایه برای طبقه ­بندی گونه­ ها استفاده شد. ارزیابی صحت
نقشه ­های حاصل ازطبقه ­بندی­ ها با استفاده از 50 درصد نمونه­ های واقعیت زمینی انجام گرفت. نتایج نشان داد که نقشه حاصل از طبقه­ بندی سلسله‌مراتبی به روش شیء­پایه در ارتفاع پروازی 55 متر بهترین توانایی تشخیص گونه­ های درختی را در بین سه ارتفاع، با ضریب کاپای 81/0 و صحت کلی 87 درصد داراست.

متن کامل [PDF 1112 kb]   (2036 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: سنجش از دور
دریافت: 1397/2/18 | پذیرش: 1397/3/21 | انتشار: 1397/8/12

فهرست منابع
1. Ameri, A., F. Dadras Javan and N. Zareinpanche. 2017. A review of methods for extracting roads from UAV aerial images. Geospatial Engineering Journal Iranian society for surveying & geomatic engineering, Vol. 4 (8). (In Persian).
2. Benz, U. C., P, Hofmann., G, Willhauck., I, Lingenfelder and M, Heynen. 2004. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of photogrammetry and remote sensing, 58(3-4): 239-258. [DOI:10.1016/j.isprsjprs.2003.10.002]
3. Chen, G., G.J, Hay., L.M, Carvalho and M.S, Wulder. 2012. Object-based change detection. International Journal of Remote Sensing, 33(14), pp.4434-4457. [DOI:10.1080/01431161.2011.648285]
4. Chenari, A., S.Y, Erfanifarf., M, Dehghani and H, Pourghasemi. 2017. Estimation of crown area of wild pistachio single trees using DSM of UAV aerial images in Baneh Research Forest, Fars province. Journal. of Wood & Forest Science and Technology, Vol. 24 (4) (In Persian). [DOI:10.5194/isprs-archives-XLII-4-W4-43-2017]
5. Chianucci, F., L, Disperati., D, Guzzi., D, Bianchini., V, Nardino., C, Lastri., A, Rindinella and P, Corona. 2016. Estimation of canopy attributes in beech forests using true colour digital images from a small fixed-wing UAV. International J. Applied Earth Obsevation and Geoinformation. 47: 60-68. [DOI:10.1016/j.jag.2015.12.005]
6. Colomina, I and P, Molina. 2014. Unmanned aerial systems for photogrammetry and remote sensing. ISPRS J. of Photogrammetry and Remote Sensing. 92: 79-97. [DOI:10.1016/j.isprsjprs.2014.02.013]
7. Erfanifard, Y., J, Feghhy., M, Zobeiry and M, Namiranian. 2010. Review Possible Provision Maps Canopy Density In The Forest Using Aerial Imaging And GIS, Proceeding Of The National Of Eighth National Conference Geomatics. (In Persian).
8. Fritz, A., T, Kattenborn and B, Koch. 2013. UAV-based photogrammetric point clouds-Tree stem mapping in open stands in comparison to terrestrial laser scanner point clouds. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci, 40, pp.141-146. [DOI:10.5194/isprsarchives-XL-1-W2-141-2013]
9. Ghasemi, A., Sh Shataee and J, Mohamadi. 2017. Identify Tree Species In Mixed Hardwood Stand Of The Caspian Forests Using Digital Images Aerial Cameras ultracam-d. Journal of wood and forest science and technology. 24(1): 77-90.
10. Hutchens, C.L., B.R, Sarbin., A.C, Bowers., J.D, McKillican., K.K, Forrester and R.M, Buehrer. 2008. An improved method for GPS-based network position location in forests. In Wireless Communications and Networking Conference, 2008. WCNC 2008. IEEE (pp. 273-277). IEEE. [DOI:10.1109/WCNC.2008.53]
11. Kane, V.R., A.R, Gillespie., R, McGaughey., J.A, Lutz., K, Ceder and J.F, Franklin. 2008. Interpretation and topographic compensation of conifer canopy self-shadowing. Remote Sens. Environ. 112: 3820-3832. [DOI:10.1016/j.rse.2008.06.001]
12. Kattenborn, T., M, Sperlich., K, Bataua and B, Koch. 2014. Automatic single tree detection in plantations using UAV-based photogrammetric point clouds. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(3), p.139. [DOI:10.5194/isprsarchives-XL-3-139-2014]
13. Koch, B.; Heyder, U.; Weinacker, H. 2006, Detection of individual tree crowns in airborne lidar data.Photogramm. Eng. Remote Sens. 72: 357-363. [DOI:10.14358/PERS.72.4.357]
14. Laliberte, A.S., A, Rango., J.E, Herrick., E.L, Fredrickson and L, Burkett. 2007. An object-based image analysis approach for determining fractional cover of senescent and green vegetation with digital plot photography. Journal of Arid Environments, 69(1), pp.1-14. [DOI:10.1016/j.jaridenv.2006.08.016]
15. Lin, Y., M, Jiang., Y, Yao., L, Zhang and J, Lin. 2015. Use of UAV oblique imaging for the detection of individual trees in residential environments. Urban Forestry and Urban Greening. 14: 404-412. [DOI:10.1016/j.ufug.2015.03.003]
16. McNeil, B., J, Pisek., H, Lepisk and E, Flamenco. 2016. Measuring leaf angle distribution in broadleaf canopies using UAVs. Agricultural and Forest Meteorology. 218: 204-208. [DOI:10.1016/j.agrformet.2015.12.058]
17. Mlambo, R., I.H, Woodhouse., F, Gerard and K, Anderson. 2017. Structure from Motion (SfM) photogrammetry with drone data: A low cost method for monitoring greenhouse gas emissions from forests in developing countries. Forests 8: 68. [DOI:10.3390/f8030068]
18. Mohan, M., Silva, C.A., Klauberg, C., Jat, P., Catts, G., Cardil, A., Hudak, A.T. and Dia, M., 2017. Individual Tree Detection from Unmanned Aerial Vehicle (UAV) Derived Canopy Height Model in an Open Canopy Mixed Conifer Forest. Forests, 8(9), p.340. [DOI:10.3390/f8090340]
19. Moselou, M. 2012. Assessment of kNN inventory method in estimating the biometric features of wild pistachio trees (Case study: Wild Pistachio Research Forest, Fars). M.Sc. Thesis, Shiraz University. 155p. (In Persian)
20. Næsset, E. 2002. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens. Environ. 80: 88-99. [DOI:10.1016/S0034-4257(01)00290-5]
21. Puliti, S., T, Gobakken., H.O, Ørka and E, Næsset. 2017. Assessing 3D point clouds from aerial photographs for species-specific forest inventories. Scand. J. For. Res. 32: 68-79. [DOI:10.1080/02827581.2016.1186727]
22. Rafieyan, O., A.A, Darvishsefat., S, Babaii and A, Mattaji. 2011. Identification of tree species using object-based classification of Digital Aerial Images in the Northern forests of Iran (Case study: Chamestan-Nur). Iranian Journal of Remote Sensing and GIS, 4(2): 63-74 (In Persian).
23. Rafieyan,O., A.A, Darvishsefat., S, Babaii Kafaki and A, Mataji. 2010. Evaluation of pixel-based and object-based classification of aerial images to identify tree species (Case Study: silviculture Chamestan Noor). Journal of Forestry. 1 (3): 35-47(In Persian)
24. Rafieyan,O., A.A, Darvishsefat., M, Namiranin. 2005. Determination of variations in the range of northern forests of the country between 73-80 years by using images etm (case study in Babil forests). Journal of Water and Soil Science Journal of Science and Technology of Agriculture and Natural Resources. Vol 3(10) (In Persian)
25. Saarinen, N., M, Vastaranta., R, Näsi., T, Rosnell., T, Hakala., E, Honkavaara., M.A, Wulder., V, Luoma., A.M, Tommaselli., N.N, Imai and E.A, Ribeiro. 2018. Assessing Biodiversity in Boreal Forests with UAV-Based Photogrammetric Point Clouds and Hyperspectral Imaging. Remote Sensing, 10(2), p.338. [DOI:10.3390/rs10020338]
26. Schiewe, J. 2002. Segmentation of high-resolution remotely sensed data concepts, application and problems. Proceeding of Symposium on Geospatial Theory, Processing and Applications, Ottawa, Canada. 34(4): 235-242.
27. Shabani Pour, M., A.A, Darvishsefat., O, Rafeyan. 2014. Study The Possibility Of Identifying Tree Species In Digital Aerial Images Based Object Classification. Journal Of The Forest And Wood Products, 67 (1): 21-32. (In Persian).
28. Shataee, Sh. 2003. Investigation of the possibility of forest types Mapping using satellite data (Case study: Kheyroud-kenar forest in north of iran)., Ph.D. Thesis, University Of Tehran Press, Tehran (In Persian).
29. Sperlich, M., T, Kattenborn., B, Koch and G, Kattenborn. 2014. Potential of unmanned aerial vehicle based photogrammetric point clouds for automatic single tree detection. Available onlilne: http://www. dgpf. de/neu/Proc2014/proceedings/papers/Beitrag270. pdf (accessed on 15 January 2015).
30. Suomalainen, J., N, Anders., S, Iqbal., G, Roerink., J, Franke., P, Wenting., D, Hünniger., H, Bartholomeus., R, Becker and L, Kooistra. 2014,A lightweight hyperspectral mapping system and photogrammetric processing chain for unmanned aerial vehicles. Remote Sens. 6: 11013-11030. [DOI:10.3390/rs61111013]
31. Tang, L and G, Shao. 2015. Drone remote sensing for forestry research and practices. J. For. Res. 26: 791-797. [DOI:10.1007/s11676-015-0088-y]
32. 15. Torres-Sanchez, F., F, Lopez-Granados and J.M, Pena. 2015. An automatic object-based method for optimal thresholding in UAV image: Application for vegetation detection in herbaceous crops. Computers and Electronics in Agriculture. 114: 43-52. [DOI:10.1016/j.compag.2015.03.019]
33. Torresan, C., A, Berton., F, Carotenuto., S.F, Di Gennaro., B, Gioli., A, Matese., F, Miglietta., C, Vagnoli., A, Zaldei and L, Wallace. 2016,Forestry applications of UAVs in Europe: A review. Int. J. Remote Sens. 38(8-10): 1-21. [DOI:10.1080/01431161.2016.1252477]
34. Vega, F., F, Ramírez., M, Siaz and F, Rosua. 2015. Multi-temporal imaging using an unmanned aerial vehicle for monitoring a sunflower crop. Biosystems Engineering J. 132: 19-27. [DOI:10.1016/j.biosystemseng.2015.01.008]
35. Wallace, L., A, Lucieer and C.S, Watson. 2014, Evaluating tree detection and segmentation routines on very high resolution UAV LiDAR data. IEEE Trans. Geosci. Remote Sens. 52: 7619-7628. [DOI:10.1109/TGRS.2014.2315649]
36. Wang, Y., J, Hyyppa., X, Liang., H, Kaartinen., X, Yu., E, Lindberg., J, Holmgren., Y, Qin., C, Mallet., and A, Ferraz. 2016,International Benchmarking of the Individual Tree Detection Methods for Modeling 3-D Canopy Structure for Silviculture and Forest Ecology Using Airborne Laser Scanning. IEEE Trans. Geosci. Remote Sens. 54: 5011-5027. [DOI:10.1109/TGRS.2016.2543225]
37. Wang, L., P, Gong and G.S, Biging. 2004, Individual tree-crown delineation and treetop detection in high-spatial-resolution aerial imagery. Photogramm. Eng. Remote Sens. 70: 351-357. [DOI:10.14358/PERS.70.3.351]
38. Xiang, H., and L, Tian. 2010. Method for automatic georeferencing Aerial remote sensing (RS) images from an unmanned aerial vehicle (UAV) platform. Biosystems Engineering j. 108: 104-113. [DOI:10.1016/j.biosystemseng.2010.11.003]
39. Yu, Q., P, Gong., N, Clinton., G, Biging., M, Kelly and D, Schirokauer. 2006. Object-based detailed vegetation classification with airborn high spatial resolution remote sensing imagery. Photogrammetric Engineering and Remote Sensing. 72(7): 799-811. [DOI:10.14358/PERS.72.7.799]
40. Yu, X., J, Hyyppä., M, Karjalainen., K, Nurminen., K, Karila., M, Vastaranta., V, Kankare., H, Kaartinen., M, Holopainen and E, Honkavaara. 2015, Comparison of laser and stereo optical, SAR and InSAR point clouds from air-and space-borne sources in the retrieval of forest inventory attributes. Remote Sens. 7: 15933-15954 [DOI:10.3390/rs71215809]
41. Zarco-Tejada, P.J., R, Diaz-Varela., V, Angileri and P, Loudjani. 2014, Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. Eur. J. Agron. 55: 89-99. [DOI:10.1016/j.eja.2014.01.004]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:

ارسال پیام به نویسنده مسئول

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به بوم‏شناسی جنگل‏های ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2023 CC BY-NC 4.0 | Ecology of Iranian Forest

Designed & Developed by : Yektaweb