دوره 10، شماره 20 - ( پاییز و زمستان 1401 1401 )                   جلد 10 شماره 20 صفحات 32-23 | برگشت به فهرست نسخه ها


XML English Abstract Print


گروه جنگلداری، دانشکده کشاورزی و منابع طبیعی، دانشگاه آزاد اسلامی، واحد چالوس، چالوس، ایران
چکیده:   (1854 مشاهده)
چکیده مبسوط
مقدمه و هدف: تنوع زیستی دارای نقش بسیار مهمی در پایداری و خود تنظیمی اکوسیستم­ ها می­ باشد و به­ عنوان شاخصی برای مقایسه وضعیت اکولوژیک اکوسیستم ­های جنگلی به­ کار می­رود. گلسنگ‌ها یکی از متداول­ترین اجزای تشــکیل دهنده تنوع زیستی در جامعه جنگلی می ­باشند. بالا بودن تنوع گلسنگ ­ها در یک منطقه نشان­ دهنده تنوع زیستی و پایداری یک اکوسیستم می­ باشد. یکـی از مهم­ترین رویکردها جهت تفسیر و ردیابی تغییرات مکانی تنوع زیستی استفاده از مدل رگرسیونی است. هدف از این مطالعه مدل­سازی تنوع گونه ­ای گلسنگ­ های پوست­زی می ­باشد.
مواد و روش­ ها: این پژوهش در بخش 2 شوراب از طرح­های جنگلداری گلبند در شهرستان نوشهر (استان مازندران) انجام گرفت. ابتدا با استفاده از جنگل گردشی و روش نمونه ­برداری انتخابی تعداد 54 قطعه نمونه برداشت گردید. سپس گونه ­های پوست­زی موجود در قطعات شناسایی گردید. وقعیت مکانی کلیه قطعه­ های نمونه با استفاده از GPS ثبت گردید. در هر قطعه نمونه تمامی گلسنگ­ های پوست­زی برداشت گردید. نمونه ­های جمع­آوری شده با استفاده از منابع معتبر گلسنگ­شناسی و هم­چنین روش­های آزمایشگاهی، شناسایی شدند. در این مطالعه برای تعیین تنوع زیستی در مرحله بعد مقدار شاخص ­های تنوع شانون وینر و N1 هیل و شاخص یکنواختی J پیلو برای هر یک از قطعات نمونه محاسبه گردید. سپس نقشه عوامل جغرافیایی و توپوگرافی تأثیرگذار در تنوع شامل فاصله از جاده و فاصله از آبراهه و شیب، ارتفاع، شاخص خیسی، شاخص قدرت جریان و فاکتور فرسایش ­پذیری تهیه گردید. از روش ­های رگرسیون وزن ­دار جغرافیایی و حداقل مربعات معمولی برای مدل­سازی استفاده شد.
 یافته­ ها: در این مطالعه 17 گونه گلسنگ که متعلق به 14 جنس و 11 خانواده بود شناسایی شد. نتایج نشان داد رگرسیون وزن ­دار جغرافیایی برای
شاخص ­های شانون وینر و
N1 هیل و J پیلو براساس مقادیر ضریب تبیین و معیار اطلاعاتی آکایکه اصلاح شده نسبت به رگرسیون حداقل مربعات معمولی دارای نتایج بهتری بود. مقدار تنوع گلسنگ بر اساس شاخص شانون- وینر و N1 هیل به ­ترتیب با دامنه ­ای از 1/24 تا 2/98 و 2/06 تا 6/99 و میزان شاخص یکنواختی J پیلو 0/205 تا 0/830 محاسبه گردید. همچنین  همچنین نتایج مربوط به شاخص موران  نشان داد که همبستگی مکانی در گلسنگ­ های پوست­زی معنی­ دار و الگوی پراکنش آنها خوشه ­ای است.

نتیجه ­گیری: در مجموع نتایج این مطالعه نشان داد روش رگرسیون وزن­ دار جغرافیایی دارای قابلیت نسبتا مناسبی در مدل­سازی تنــوع مکانی گونه­ های گلسنگ پوست­زی در توده­ های جنگلی می­ باشد. از این مدل رگرسیونی می­توان در مدلسازی تنوع گلسنگ استفاده نمود.


متن کامل [PDF 2387 kb]   (747 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اکولوژی جنگل
دریافت: 1399/11/23 | پذیرش: 1400/3/25 | انتشار: 1401/8/1

فهرست منابع
1. Asta, J.W., M. Erhardt, F. Ferretti, U. Fornasier, P.L. Kirschbaum, O.W. Nimis, S. Purvis, C. Pirintsos, C. Scheidegger, V. Haluwyn and V. Wirth. 2002. European guideline for Mapping lichen diversity as an indicator of environmental stress, NATO Science Series, British Lichen Society, 7: 273 -279. [DOI:10.1007/978-94-010-0423-7_19]
2. Benitez, A., G. Aragon, Y. Gonzalez and M. Prieto. 2018. Functional traits of epiphytic lichens in response to forest disturbance and as predictors of total richness and diversity. Ecological Indicators, 86: 18-26. [DOI:10.1016/j.ecolind.2017.12.021]
3. Brunsdon, C. and S.A. Fotheringham, and M. Charlton. 1998. Geographically Weighted Regression-Modelling Spatial NonStationarity, Journal of the Royal Statistical Society. Series D (The Statistician), 47: 431-443. [DOI:10.1111/1467-9884.00145]
4. Cowden, P., M. DeBues and C. Dean. 2018. The Influence of Vehicular Air Pollution on Lichen Abundance in Two Central Ontario Forests. Journal of Undergraduate Studies at Trent (JUST), 6(1): 47-52.
5. Emborg, J., M. Christensen and J. Heilmann Clausen. 1999. The structural dynamics of Suserupskov, a near natural temperate deciduous forest in Denmark. Forest Ecology and management, 126: 173-189. [DOI:10.1016/S0378-1127(99)00094-8]
6. Foody., G.M. 2003. Geographical weighted as a further refinement to regression modeling: an example focused on the NDVI-rainfall relationship. Remote Sensing of Environment, 88: 283-293. [DOI:10.1016/j.rse.2003.08.004]
7. Fotheringham, A.S., M. Charlton and C. Brunsdon. 2001. Spatial variations in school performance: A local analysis using geographically weighted regression. Geogr. Environ. Model. 2001, 5: 43-66. [DOI:10.1080/13615930120032617]
8. Fotheringham, S.A., C. Brunsdon and M. Charlton. 2002. Geographically Weighted Regression the analysis of spatially varying relationships, John Wiley & Sons.
9. Girard, F., S. Payette and R. Gagnon. 2008. Rapid expansion of lichen woodlands within the closed-crown boreal forest zone over the last 50 years caused by stand disturbances in eastern Canada. Journal of Biogeography, 35(3): 529-537. [DOI:10.1111/j.1365-2699.2007.01816.x]
10. Golubkova, N.S. 1988. The Lichen Family Acarosporaceae in the USSR.Komarov Botanical Institute, Academy of Sciences of the USSR. Leningrad: Nauka (In Russian).
11. Hu, S., L. Chen, L. Li, B. Wang, L. Yuan, L. Cheng, Z. Yu and T. Zhang. 2019. Spatiotemporal dynamics of ecosystem service value determined by land-use changes in the urbanization of Anhui Province, China. Int. J. Environ. Res. Public Health, 16: 5104. [DOI:10.3390/ijerph16245104]
12. Huo, X.N., H. Li, D.F. Sun, L.D. Zhou and B.G. Li. 2012. Combining geostatistics with Moran's I analysis for mapping soil heavy metals in Beijing, China. International journal of environmental research and public health, 9(3): 995-1017. [DOI:10.3390/ijerph9030995]
13. Johansson, P. 2008. Consequences of disturbance on epiphytic lichens in boreal and near boreal forests. Biological conservation, 141: 1933-1944. [DOI:10.1016/j.biocon.2008.05.013]
14. Kantvilas, G., S.J. Jarman and P.R. Minchin. 2015. Early impacts of disturbance on lichens, mosses and liverworts in Tasmania's wet eucalypt production forests. Australian Forestry, 78(2): 92-107. [DOI:10.1080/00049158.2015.1053025]
15. Moning, C., S. Werth, F. Dziock, C. Bassler, J. Bradtka, T. Hothorn and J. Muller. 2009. Lichen diversity in temperate montane forests is influenced by forest structure more than climate, FOREST ECOLOGY and MANEGMENT, 258: 745-751. [DOI:10.1016/j.foreco.2009.05.015]
16. Nimvari, M.E., A. Mataji, M.H. Moniri and S.M. Hosseini. 2013. Corticolous lichen diversity in the Quercus-Carpinus type to separate tree species (Case study: Nowshahr forests), 5(2): 119-130 (In Persian).
17. Park, J., B. Choi and J. Lee. 2019. Spatial Distribution Characteristics of Species Diversity Using Geographically Weighted Regression Model. Sensors and Materials, 31(10): 3197-3213. [DOI:10.18494/SAM.2019.2300]
18. Purvis, O. W. 1992. Lichen Flora of Great Britain and Ireland. Natural History Museum Publications in association with the British Lichen Society.
19. Pykala, J., R.K. Heikkinen, H. Toivonen and K. Jaaskelainen. 2006. Importance of Forest Act habitats for epiphytic lichens in Finnish managed forests. Forest Ecology and Management 223: 84-92. [DOI:10.1016/j.foreco.2005.10.059]
20. Shao, Y., X. Yuan, C. Ma, R. Ma and Z. Ren. 2020. Quantifying the Spatial Association between Land Use Change and Ecosystem Services Value: A Case Study in Xi'an, China. Sustainability, 12, 4449; doi:10.3390/su12114449. [DOI:10.3390/su12114449]
21. Svoboda, D., O. Peksa and J. Vesela. 2010. Epiphytic lichen diversity in central European oak forests: Assessment of the effects of natural environmental factors and human influence. Environmental Pollution 158: 812-819. [DOI:10.1016/j.envpol.2009.10.001]
22. Tu, J. and Z. Xia. 2008. Examining Spatially Varying Relationships Between Land Use and Water Quality Using Geographically Weighted Regression I: Model Design and Evaluation", Science of The Total Environment, 407: 358-378. [DOI:10.1016/j.scitotenv.2008.09.031]
23. Uboni, A., A. Blochel, D. Kodnik and J. Moen. 2019. Modelling occurrence and status of mat-forming lichens in boreal forests to assess the past and current quality of reindeer winter pastures. Ecological Indicators, 96: 99-106. [DOI:10.1016/j.ecolind.2018.08.008]
24. Veiskarami, Z., B. Pilehvar and A. Haghizadeh. 2018. Effects of Anthropogenic Disturbance on Diversity, Biomass and Storage of N and P Nutrients by Herbaceous Vegetation of Gall Oak Stands (Case Study: Shine Qellaii Forests, Lorestan Province). Ecology of Iranian Forests, 6(12): 18-29. [DOI:10.29252/ifej.6.12.18]
25. Williams, D. 2013. Naturalist's Guide to Canyon Country. Rowman & Littlefield. 231 pp.
26. Will-Wolf, S., S. Jovan, P. Neitlich, J.E. Peck and R. Rosentreter. 2015. Lichen-based indices to quantify responses to climate and air pollution across northeastern USA. The Bryologist, 118(1): 59-82. [DOI:10.1639/0007-2745-118.1.059]
27. Wolock, D.M., G.M. Horenberg, K.J. Beven and W.G. Campbell. 1989. The relationship of catchment topography and soil hydraulic characteristics to lake alkalinity in the Northerne United States, Water Resour, Resource, 25: 829-837. [DOI:10.1029/WR025i005p00829]
28. Zarafshar, M., M.J. Rousta, M. Matinizadeh, S.K. Bordbar, K. Enayati, Y. Kooch, M.N. Saber and A. Abbasi. 2021. Comparison of Carbon and Nitrogen Sequestration in Soils Under Plantations, Natural Forest and Agricultural Farm Land Uses in Arjan Plain in the Fars Province. Ecology of Iranian Forests, 8(16): 165-172.
29. Zevenbergen, L.W. and C.R. Thorne. 1987 Quantitative analysis of land surface topography. Earth Surf. Process Landforms 12: 47-56. [DOI:10.1002/esp.3290120107]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.