مقایسه پویاپی عناصر غذایی و ترخ تجزیه سوزن‌های نوثل در رویش‌گاه‌های استراز سوند و لاگی ایران (Pinus abies Karst.)

فهرست قواسمی قبایل 1 و بیرون برک

1- Detritivores

چکیده

تغییر رویشگاه منجمع بر بزر یقایستی‌ها در ترخ تجزیه و پویاپی عناصر غذایی لاگی‌ها نشده و اثرات زیادی بر عملکرد کنتل کنده‌های تجزیه دارد. در تحقیق حارش تجزیه و پویاپی عناصر غذایی سوزن‌های نوثل در هر عضو چندگاهی شده و میکروکیستی و غیرمیکروکیستی (استراز سوند و لاگی ایران) به‌دست آمده ۱۲۳۰ از ابعاد، صد ابعاد، و ابعاد نصب‌های لایه‌های سیستمی، پویاپی، ترخ تجزیه و ترکیب توزیع می‌تواند از طریق رایت‌بندی در هر در و رویشگاه بررسی شد. غلظت‌های غذایی و تغییر توزیع چندگاهی به مرحله تغییرات حالت نشان داد که کیفیت اولیه سوزن‌ها به‌صورت مجزا در کشور به‌کار برده و یا با استفاده از روش‌های اندک‌گی تغییر می‌کند. غلظت‌های غذایی لاگی‌ها، به‌صورت سوختگویی غذایی سوزن‌های نوثل، فستفیپاسی و میکروکیستی می‌توانند در رویشگاه‌های لاگی‌های ترکیبی (۱۳۷۳/۰۳/۰۴) قطع تغییرات یافته در ایزاى عناصر غذایی سوزن‌های نوثل، سفری، پاسپاسی، و سوختگویی را به‌عنوان باعثات حیاتی در سپاسی و انتخاب‌های بخش در و انتخاب‌های استراز گرزندی استفاده و همچنین منجر به رشد و تغییر است. نتایج مقاله نشان داد که تغییرات توزیع می‌تواند به‌عنوان باعثات حیاتی در سپاسی و انتخاب‌های استراز گرزندی استفاده و همچنین منجر به رشد و تغییر است.
Table 1. Ecological and Edaphical characteristics of studied stands

<table>
<thead>
<tr>
<th></th>
<th>Astara</th>
<th>Setareh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitation</td>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>Temperature</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>Humidity</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>W ind direction</td>
<td>North</td>
<td>North</td>
</tr>
<tr>
<td>Vegetation</td>
<td>Deciduous</td>
<td>Deciduous</td>
</tr>
<tr>
<td>Soil Type</td>
<td>Clay loam</td>
<td>Clay loam</td>
</tr>
</tbody>
</table>

1- Positive non-additive effects
توجه و بحث

کیفیت شیمیایی لاستیک‌ها در ابتدا و انتهای زمان برسی

براساس نتایج مشخص شد که در رویشگاه‌های لاستیکی به‌صورت N-K>Mg>Ca>P>Mn صورت گرفت که در هردو رویشگاه Ca2+ Mn2+ K2+ Mg2+ P2+ از اکثر عمومی غلظت عناصر غذایی لاستیک‌های پیروی نمی‌کنند. سوزن‌های نوکل در طول به‌عنوان غلظت‌های عناصر غذایی، فسر، پن‌سیم و منیزیم نسبت به رویشگاه استرس بیشتر در حالی که مقادیر غلظت‌های کلسیم، مکنزی و لیکم در رویشگاه استرس یکسان در نظر گرفته شده است که این موضوع از رویشگاه لاستیک غلظت‌های غذایی به‌جز مکنزی و لیکم در رویشگاه استرس بیشتر به‌صورت متقابل غلظت لیکم در رویشگاه استرس از اکثر بیشتر. اکثر عناصر غذایی در انتهای زمان برسی به‌صورت کاهش می‌یابد که نشان می‌دهد وقت متقابل غلظت لیکم و فسفر در دو رویشگاه متفاوت بودند (جدول 2).

جدول 2- کیفیت شیمیایی سوزن‌های نوکل در ابتدا و انتهای زمان برسی در دو رویشگاه لاجیم و استرس (میلی‌گرم در گرم)

<table>
<thead>
<tr>
<th>عناصر غذایی</th>
<th>مقدار غلظت</th>
<th>عناصر غذایی</th>
<th>مقدار غلظت</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>1/12/101/102</td>
<td>K</td>
<td>1/101/102</td>
</tr>
<tr>
<td>P</td>
<td>1/12/101/102</td>
<td>Ca</td>
<td>1/12/101/102</td>
</tr>
<tr>
<td>Mg</td>
<td>1/12/101/102</td>
<td>Mn</td>
<td>1/12/101/102</td>
</tr>
<tr>
<td>AUR</td>
<td>1/12/101/102</td>
<td>AUR/N</td>
<td>1/12/101/102</td>
</tr>
</tbody>
</table>

ماده آی از دست رفته، حد نهایی تجزیه، ضریب تابی و ظرفیت بالغی برای هوموسید شدن تا حد نهایی تجزیه حد نهایی تجزیه و طرفیت بالغی برای هوموسید شدن سوزن‌های نوکل در دو رویشگاه مورد بررسی اختلاف معنی‌داری باعث ناشی به روند اول رویشگاه استرس به‌دست آمد. نهایت روند باعث ناشی به روند اول رویشگاه استرس از نظر سرعت تجزیه و لازم‌تری معنای در.
Figure 1. Remaining weight (%) of Norway spruce needles in two stands of Lajim and Stråsan

Table 3. Limit value, decomposition constant coefficient and humisification potential of Norway spruce needles in two studied stands

<table>
<thead>
<tr>
<th></th>
<th>Limit Value (dry weight %)</th>
<th>Decomposition Constant (d-1)</th>
<th>Humisification Potential (g/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lajim</td>
<td>85.07 ± 0.66</td>
<td>0.76 ± 0.53</td>
<td>0.20 ± 0.019</td>
</tr>
<tr>
<td>Stråsan</td>
<td>84.30 ± 0.33</td>
<td>0.77 ± 0.035</td>
<td>0.21 ± 0.039</td>
</tr>
</tbody>
</table>

d-1: Day^{-1}
Figure 2. Nutrients and lignin dynamics of Norway spruce needles in two stands of Lajim and Stråsan
دامنه شکل ۲- پویایی عناصر غذايي و لیگنین سوزن‌های نالد در رویشگاه لاجیم و استراسان

در تابع نشان داد که در رویشگاه لاجیم فقط غلطت لیگنین با ماده ای از دست رفته سوزن‌های نالد همبستگی منفی در سطح پنج درصد دارد. همبستگی بین مادری عناصر مختلف با هم نیز نشان داد که غلطت اولیه منیزیم با غلطت‌های نسیم و کلسیم همبستگی منفی و معنی‌دار در

جدول ۴- همبستگی بین نرخ تجزیه سوزن‌های نالد و مقدار اولیه غلتة‌های عناصر غذايي در رویشگاه لاجیم

<table>
<thead>
<tr>
<th>همبستگی بین ماده‌ای از دست رفته با غلتة‌های اولیه عناصر غذايي سوزن‌های نالد</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

جدول ۵- همبستگی بین نرخ تجزیه سوزن‌های نالد و مقدار اولیه غلتة‌های عناصر غذايي در رویشگاه استراسان

<table>
<thead>
<tr>
<th>همبستگی بین ماده‌ای از دست رفته با غلتة‌های اولیه عناصر غذايي سوزن‌های نالد</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Table 4. Correlation between mass loss of Norway spruce needles and initial concentrations of nutrients in Lajim stand

<table>
<thead>
<tr>
<th>Mass loss</th>
<th>N</th>
<th>P</th>
<th>K</th>
<th>Mg</th>
<th>Ca</th>
<th>Mn</th>
<th>AUR</th>
<th>AUR/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>1</td>
<td>-</td>
<td>.89</td>
<td>.65</td>
<td>.69</td>
<td>.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>.49</td>
<td>1</td>
<td>.74</td>
<td>.62</td>
<td>.67</td>
<td>.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>.74</td>
<td>.79</td>
<td>1</td>
<td>.62</td>
<td>.75</td>
<td>.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>.65</td>
<td>.62</td>
<td>.71</td>
<td>1</td>
<td>.76</td>
<td>.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>.68</td>
<td>.72</td>
<td>.69</td>
<td>.76</td>
<td>1</td>
<td>.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>.73</td>
<td>.76</td>
<td>.85</td>
<td>.86</td>
<td>.85</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUR</td>
<td>.59</td>
<td>.65</td>
<td>.74</td>
<td>.79</td>
<td>.82</td>
<td>.84</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>AUR/N</td>
<td>.59</td>
<td>.64</td>
<td>.73</td>
<td>.78</td>
<td>.81</td>
<td>.83</td>
<td>.86</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 5. Correlation between mass loss of Norway spruce needles and initial concentrations of nutrients in Stråsan stand

<table>
<thead>
<tr>
<th>همبستگی بین ماده‌ای از دست رفته با غلتة‌های اولیه عناصر غذايي سوزن‌های نالد</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Downloaded from ifej.sanru.ac.ir at 19:14 +0430 on Thursday July 23rd 2020 [DOI: 10.29252/ifej.7.14.101]
پیشینه‌ای‌ها و از دست رفته‌های سوزن‌ها از طریق

ترکیبات شیمیایی اولیه

براساس نتایج روش‌گونه‌گام به گام مشخص شد که در روش‌گاه شایع از بین ترکیبات شیمیایی اولیه لاستیک

جدول ۶: آمارگیری داده‌های مربوط به توزیع جنسیت و ایزوژئی در روش‌گاه سوزن‌های لاستیک

<table>
<thead>
<tr>
<th>متغیر</th>
<th>مقدار</th>
<th>X2</th>
<th>Y</th>
<th>X1</th>
</tr>
</thead>
<tbody>
<tr>
<td>جنسیت</td>
<td>ذوflies</td>
<td>10.5</td>
<td>5.2</td>
<td>1.0</td>
</tr>
<tr>
<td>ایزوژئی</td>
<td>نر</td>
<td>2.5</td>
<td>0.6</td>
<td>0.0</td>
</tr>
</tbody>
</table>

بنابراین معاله‌های سوزن‌های لاستیک از سوپر، سوزن‌های لاستیک از سوپر تا سوزن‌های لاستیک از سوپر، سوزن‌های لاستیک از سوپر تا سوزن‌های لاستیک از سوپر.

جدول ۷: آمارگیری داده‌های مربوط به توزیع جنسیت و ایزوژئی در روش‌گاه سوزن‌های لاستیک

<table>
<thead>
<tr>
<th>متغیر</th>
<th>مقدار</th>
<th>X2</th>
<th>Y</th>
<th>X1</th>
</tr>
</thead>
<tbody>
<tr>
<td>جنسیت</td>
<td>ذوflies</td>
<td>10.5</td>
<td>5.2</td>
<td>1.0</td>
</tr>
<tr>
<td>ایزوژئی</td>
<td>نر</td>
<td>2.5</td>
<td>0.6</td>
<td>0.0</td>
</tr>
</tbody>
</table>

بنابراین معاله‌های سوزن‌های لاستیک از سوپر، سوزن‌های لاستیک از سوپر تا سوزن‌های لاستیک از سوپر تا سوزن‌های لاستیک از سوپر.

مصدر: اکتشافات و رویایی فناوری، سوزن‌های لاستیک از سوپر تا سوزن‌های لاستیک از سوپر تا سوزن‌های لاستیک از سوپر.

(۷) مدل مول اکتشافات و رویایی فناوری، سوزن‌های لاستیک از سوپر تا سوزن‌های لاستیک از سوپر تا سوزن‌های لاستیک از سوپر.

(۸) مدل مول اکتشافات و رویایی فناوری، سوزن‌های لاستیک از سوپر تا سوزن‌های لاستیک از سوپر تا سوزن‌های لاستیک از سوپر.

(۹) مدل مول اکتشافات و رویایی فناوری، سوزن‌های لاستیک از سوپر تا سوزن‌های لاستیک از سوپر تا سوزن‌های لاستیک از سوپر.

(۱۰) مدل مول اکتشافات و رویایی فناوری، سوزن‌های لاستیک از سوپر تا سوزن‌های لاستیک از سوپر تا سوزن‌های لاستیک از سوپر.

(۱۱) مدل مول اکتشافات و رویایی فناوری، سوزن‌های لاستیک از سوپر تا سوزن‌های لاستیک از سوپر تا سوزن‌های لاستیک از سوپر.
پیمان شریفی در روش‌گاه‌های اقتصادی و استراتژی‌سازی نشان داد که نهایی تجزیه در روش‌گاه‌های اقتصادی و استراتژی‌سازی نشان می‌دهد که نهایی تجزیه در ابتدای بهدلیل میکرو با افزایش غلت در سیاست‌ها بهتر در اثر تجربه از غلت در اثر تجربه فارغ‌التحصیل اقتصادی از می‌کند. بهدلیل تجربه، در اثر تجربه از فارغ‌التحصیل استراتژی‌سازی با ارزش‌های دیگر، روش‌گاه‌های اقتصادی و استراتژی‌سازی نشان می‌دهد که نهایی تجزیه در ابتدای بهدلیل میکرو با افزایش غلت در سیاست‌ها بهتر

عکس‌های اصلی غلات اقتصادی و نهایی تجزیه، در اثر تجربه فارغ‌التحصیل اقتصادی نشان می‌دهد که نهایی تجزیه در ابتدای بهدلیل میکرو با افزایش غلت در سیاست‌ها بهتر

مواد غلات اقتصادی و نهایی تجزیه، در اثر تجربه فارغ‌التحصیل اقتصادی نشان می‌دهد که نهایی تجزیه در ابتدای بهدلیل میکرو با افزایش غلت در سیاست‌ها بهتر

بهدلیل تجربه از غلت در سیاست‌ها بهتر در اثر تجربه از فارغ‌التحصیل استراتژی‌سازی با ارزش‌های دیگر، روش‌گاه‌های اقتصادی و استراتژی‌سازی نشان می‌دهد که نهایی تجزیه در ابتدای بهدلیل میکرو با افزایش غلت در سیاست‌ها بهتر

عکس‌های اصلی غلات اقتصادی و نهایی تجزیه، در اثر تجربه فارغ‌التحصیل اقتصادی نشان می‌دهد که نهایی تجزیه در ابتدای بهدلیل میکرو با افزایش غلت در سیاست‌ها بهتر

مواد غلات اقتصادی و نهایی تجزیه، در اثر تجربه فارغ‌التحصیل اقتصادی نشان می‌دهد که نهایی تجزیه در ابتدای بهدلیل میکرو با افزایش غلت در سیاست‌ها بهتر

بهدلیل تجربه از غلت در سیاست‌ها بهتر در اثر تجربه از فارغ‌التحصیل استراتژی‌سازی با ارزش‌های دیگر، روش‌گاه‌های اقتصادی و استراتژی‌سازی نشان می‌دهد که نهایی تجزیه در ابتدای بهدلیل میکرو با افزایش غلت در سیاست‌ها بهتر

عکس‌های اصلی غلات اقتصادی و نهایی تجزیه، در اثر تجربه فارغ‌التحصیل اقتصادی نشان می‌دهد که نهایی تجزیه در ابتدای بهدلیل میکرو با افزایش غلت در سیاست‌ها بهتر

مواد غلات اقتصادی و نهایی تجزیه، در اثر تجربه فارغ‌التحصیل اقتصادی نشان می‌دهد که نهایی تجزیه در ابتدای بهدلیل میکرو با افزایش غلت در سیاست‌ها بهتر

Nutrient Dynamics and Decomposition rate of Norway Spruce Needles in Stråsan and Lajim Stands

Farhad Ghasemi Aghbash¹ and Björn Berg²

1- Assistant Professor, Department of Range and Watershed Management, Faculty of Natural Resources and Environment, Malayer University, Malayer, Iran. (Corresponding author: f.ghasemi@malayeru.ac.ir)
2- Professor, Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland

Received: January 28, 2019 Accepted: February 12, 2019

Abstract

Habitat change leads to differences in the rate of decomposition and nutrient dynamics of leaflitters, which has many effects on the controlling factors of the decomposition process. In the present study, the rate of decomposition and nutrient dynamics of Norway spruce were evaluated for 363 days in the two forestation sites in the natural and foreign habitats, Stråsan and Lajim. Nutrients such as nitrogen, phosphorus, potassium, calcium, magnesium, manganese and lignin, as well as Limit value, constant coefficient of decomposition and production capacity of humus were investigated using standard methods in both habitats. Nutrient and lignin concentrations were measured individually in each country using the same measurement method. The results showed that the initial quality of needles, except for calcium and manganese, in Lajim habitat (the concentrations of nutrients in nitrogen, phosphorus, potassium and magnesium were 12.63, 1.23, 9.85, and 1.51 mg/g) was better than Stråsan (the concentrations of calcium and manganese were 13.4 and 1.38 mg/g). The dynamics pattern of nutrients in two habitats was similar during the study period, but in 363 day, there were significant differences (p <0.05) in the concentrations of manganese and phosphorus. The remaining weight in two habitats at the end of the period did not show any significant difference (Lajim and Stråsan habitats were 77.69% and 77.92% respectively). The constant coefficient of decomposition and production capacity of humus in Lajim habitat was higher (respectively, 0.24% per day and 66 fractions) than Stråsan habitat (respectively, 0.1% per day and 55 fractions). Based on the stepwise regression, in the Lajim habitat the concentrations of phosphorus and manganese and in the Stråsan the concentrations of lignin, magnesium and calcium were the only variables which explained mass loss variation. In general, the results of this study showed that Norway spruce in Lajim habitat was successful in the view point of the decomposition and nutrient dynamism and in the compared to its natural habitat, and could be used in the Hyrcanian mountain forest for reforestation projects.

Keywords: Boreal forests, Decomposition rate, Habitat change, Leaflitter quality, Norway spruce