ارزیابی توان اکولوژیک و تخمین روزمنی توده‌های دست‌کشیده در چنگل‌های ناراکلا

مقدمه
چنگل‌کاری همه‌چیز چوب در برخی کشورهای جهان می‌باشد. بنابراین منابع محیطی بهره‌مندی از چنگل‌کاری باعث بهبود در حاصل درآمد اقتصادی انتقال بهره‌مندی از منابع محیطی بهره‌مندی از چنگل‌کاری استفاده شده و اجرای چنگل‌کاری باعث بهبود تولید که در برخی کشورهای جهان می‌باشد.

واژه‌های کلیدی: چنگل‌کاری، ژیتون، روزمنی، سامان‌های اطلاعاتی جغرافیایی توان‌ها

افزایش گرم شدن زمین و کاهش الگوی های ناراکلا در بیماری از کشورهای جهان، به علت افزایش ویولچت و سایر عوامل گرم شدن زمین، در مجاورت شرایطی خاصی که هر کشورهای جهان، مورد توجه و تأکید قرار می‌گیرد. (۲۲) چنگل‌کاری در چنگل‌های جنگل‌پوش استفاده شده و اجرای چنگل‌کاری باعث بهبود تولید که در برخی کشورهای جهان می‌باشد.

۱۶-۱۷ سال اخیر افزایش یافته و تا حد سیزی زیادی مواد
منطقه به اساس مطالعات طرح جنگل‌داری به دو سری تقسیم شده که سری یک شامل 31 قطعه به ساختار 13/21 هکتار و سری دو شامل 37 قطعه به ساختار 21/19 هکتار می‌باشد. جنگل‌هایی که حداکثر 450 متراً از سطح دریا از سطح دریا با باید قرار گرفتن‌های هعلت تندیکی به روس‌های اوسا و مرسم و دارابک سر قراری به پایه‌بندی جهت احیا و بازسازی آن‌ها از سال 1367 قطع کردن انجام گردید. ساخته‌ای نقطه در سطح دریا 1387/5 هکتار می‌باشد و با کناره‌زنی زیر جنگل‌کاری شد (1).

Fraxinus (Acer velutinum Boiss. –) (Acer cappadocicum Gled. –) (excelsior L. –) (Quercus castaneifolia C.A.M. –) (Juglans regia L.) (Pinus brutia Ten.)

داده‌های مورد استفاده در این تحقیق برای مکان‌بندی منطقه مستند جنگل‌کاری با GIS ارتفاع از سطح دریا به نظریه‌های خاک‌سنجی مناطق بود که تنویع و تراکم محیط‌های نهاد توسط اداره کل منابع طبیعی استان مازندران انجام شد.

روش اندازه‌گیری فزوحش در این مطالعات از شماره‌گذاری تپه‌گزاری برای منطقه به منظور تسویه جنگل‌کاری به منظور استفاده از GIS مطالعات کتابخانه‌ای خصوصیات اکولوژیک (شبی، ژانگ) گرفته ارتفاع از سطح دریا به نظریه‌های خاک‌سنجی تپه‌گزاری جنگل‌کاری و جدول خصوصیات اکولوژیک کونه‌ها (جدول 1) بهره‌مند.

که عادی‌ترهای جنگل کاری در مورد منجر به افزایش تسریب کربن جنگل و کاهش انتشار CO2 محسوس می‌شود. فکر و همکاران (9) اعلام کردند جنگل کاری حدود 80 درصد از کل ذخیره کربن جنگل را از لحاظ تکنیکی می‌دهد. پاتولو و همکاران (21) با استفاده از مدل‌های آماری، منابعی مانند بهبود کیفیت آب، کنترل فرسایش و تاثیر آب‌سوزی را فراموش کردند.

این مطالعه دارای هدف می‌باشد: تحلیل مکانیک توان اکولوژیک منطقه و تعیین مناطق مناسب برای جنگل کاری با به کناره و دور، تدوین منابع جنگلی برای ای از گونه‌های در جنگل‌کاری با به کناره با استفاده از مدل‌های آماری در ترتیب مناسب‌ترین گونه‌ها برای جنگل‌کاری در منطقه با نشانه‌های落ち‌های گیاهی به منظور جنگل کاری تأکید دارد.

مواد و روش‌ها

منطقه مورد مطالعه

منطقه مورد مطالعه جزیره‌ای ناحیه دارابکلا، واقع در جنوب شرقی شهرستان ساری در استان مازندران می‌باشد (شکل 1)، مساحت این منطقه 1303 هکتار می‌باشد که در حدود 538/60% ناحیه روستای جاجایی (شکل 2) و 10/70% و 55/20% ناحیه روستای تخت‌خانی و 4/30% عرض شمالی قرار دارد.
در منطقه مورد مطالعه، نقشه‌های مناطقی بدون کاربری، تراکم و تپ پوشش گیاهی و شیب منطقه با هم ادامه داشته‌اند. سپس با استفاده از تابع جستجوگر SQL منطقه‌های کارتون تراکم پوشش گیاهی (عنی طبقه داری تراکم 10-01) با بررسی گیاهی که در ناحیه منطقه بود و پوشش گیاهی (زمین‌های خالی) بودن با منطقه که در ناحیه تپ پوشش گیاهی بیشتری و نسبت گیاهی قابل‌گزاری شدند با زمین‌های خالی موجود در کمتر از 25 درصد بخش (15) منطقه شدند.

در مرحله بعد، نقشه منطقه مناسب برای کاشت هورگون در جدول ۱ نشان داده شد. این جدول شامل اطلاعات ۴۶ گونه مختلف را در منطقه مورد مطالعه نشان می‌دهد. جدول ۱ ارائه‌شده با استفاده از نرم‌افزار ArcGIS ۱۰.۳ برای ساخت رابطه بین داده‌های نقشه‌ها و گونه‌ها در منطقه مورد مطالعه استفاده شد.

جدول ۱ - خوصیت‌های اکولوژیکی گونه‌های موجود در منطقه

<table>
<thead>
<tr>
<th>شیب (درصد)</th>
<th>جهت</th>
<th>گونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>N, NW, NE</td>
<td>-75</td>
<td>پیت</td>
</tr>
<tr>
<td>N, NW, NE</td>
<td>-25</td>
<td>انی ۱۰ ۰۱ ۰۲ ۰۳ ۰۴ ۰۵ ۰۶ ۰۷</td>
</tr>
<tr>
<td>N, SW, NE</td>
<td>۰۷۵</td>
<td>نتیجه‌گیری ۲۴ ۲۵ ۲۶ ۲۷ ۲۸ ۲۹ ۳۰</td>
</tr>
<tr>
<td>S, SW, SE</td>
<td>۱۰۰</td>
<td>نتیجه‌گیری ۳۱ ۳۲ ۳۳ ۳۴ ۳۵ ۳۶ ۳۷</td>
</tr>
<tr>
<td>N, E</td>
<td>۱۳۵</td>
<td>نتیجه‌گیری ۳۸ ۳۹ ۴۰ ۴۱ ۴۲ ۴۳ ۴۴</td>
</tr>
<tr>
<td>کاج پرنسی</td>
<td>۱۶۵</td>
<td>نتیجه‌گیری ۴۵ ۴۶ ۴۷ ۴۸ ۴۹ ۵۰ ۵۱</td>
</tr>
<tr>
<td>کالیوم ۵۲</td>
<td>۱۹۵</td>
<td>نتیجه‌گیری ۵۲ ۵۳ ۵۴ ۵۵ ۵۶ ۵۷ ۵۸</td>
</tr>
<tr>
<td>گروند</td>
<td>۲۲۵</td>
<td>نتیجه‌گیری ۵۹ ۶۰ ۶۱ ۶۲ ۶۳ ۶۴ ۶۵</td>
</tr>
</tbody>
</table>

جدول ۲ - خوصیت‌های گونه‌های موجود در منطقه

<table>
<thead>
<tr>
<th>منابع (درصد)</th>
<th>نام علمی</th>
<th>گونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰-۵</td>
<td>Quercus castaneifolia C.A.M.</td>
<td>بالدارود</td>
</tr>
<tr>
<td>۶-۱۰</td>
<td>Acer cappadocicum Gled.</td>
<td>شیران</td>
</tr>
<tr>
<td>۱۱-۱۵</td>
<td>Fraxinus excelsior L.</td>
<td>یون</td>
</tr>
<tr>
<td>۱۶-۲۰</td>
<td>Juglans regia L.</td>
<td>گلد کد</td>
</tr>
<tr>
<td>۲۱-۲۵</td>
<td>Pinus brutia Ten.</td>
<td>پرنسی</td>
</tr>
<tr>
<td>۲۶-۳۰</td>
<td>Acer velutinum Boiss.</td>
<td>پدری</td>
</tr>
<tr>
<td>۳۱-۳۵</td>
<td>Alnus subcordata C.A.M.</td>
<td>کالیوم</td>
</tr>
</tbody>
</table>

در مرحله بعد، به منظور تعیین مناطق مناسب جنگل کاری، نقشه‌های پیشرفته به کار برده شد و انتخاب مناطق مناسب برای کاشت هورگون در منطقه مورد مطالعه انجام شد.
ارزیابی توان اکولوژیکی و تخمین روندی توده‌های دست کاشت در جنگل دارابکلا

اندازه‌گیری حجم تنه درختان بر حسب متراکم‌بندی استفاده از رابطهٔ ۱ انجام شد.

\[V = \frac{b}{3} \times h \times f \]

(۱) \(V \) حجم تنه، \(b \) طبیعی شکل کاری، \(h \) طول کاری، \(f \) ضایعات م등ع درخت در ارتقای بررسی‌شده.

\[B = V \times R \]

(۲)

تنبیه‌هایی شد که شکل ۳، ۴ و ۵ به ترتیب نشانه‌هایی در حفظ طبیعی، جهت در نه طبیعی و ارتقای از سطح دریای هزار تپه یا بازیابی آن می‌دهد. نشانگر خاک نیز براساس ویژگی‌های مختلف باراک‌کوهی یک درخت استفاده گردیدند. در سطح‌های ماده اولیه، خاک و طبیعی نمودار ساختار اولیه آن درختان (شکل ۸) به منظور تغییر مناطق مختلف. در این مقاله، منابع چهار کاری در منطقه مورد مطالعه، تولید یک طبقه‌ای بودن کاربری (شکل ۹) و تراکم بندی‌های طبقه‌ای بودن کاربری (شکل ۱۰) و چسبانی‌های طبقه‌ای به هم (شکل ۱۰) به منظور تغییر مناطق مختلف. منابع چهار کاری در منطقه تهیه شد و مباحث این مناطق نیز به‌دست آمد (شکل ۱۱). شکل ۱۰ نشانه کاربری چند کاری بازیابی منطقه را نشان می‌دهد که در آن، مناطق چند کاری شده و مناطق با قابلیت چند کاری را می‌توان مشاهده نمود.

در تحقیق موردنظر، جرم مخچوصی به‌حوزه‌ی محاسبات قرار داده شد. به‌حوزه‌ی محاسبه‌ی پژوهش‌های بای‌مان یا تای خود تنه استفاده از مدل‌های آزمایشی موجود (جدول ۳) بدست آمد.

محاسبه‌ی زیتوده کل روزانی از مجموع زیتوده تنه و تاج و پردازه‌ی توان درونی در آن که ۵۰ درصد وزن خشک اجزای درخت طبقه رابطه ۳ به‌عنوان گرگشات (۳) به‌دست آمد.

\[C = B \times 0.5 \]

(۳)

نتایج و بحث

ارزیابی توان اکولوژیکی منطقه مطالعه DDEM (دل‌مال‌نگاری از سطح دریای رقومی) به‌عنوان توجه به منطقه از تپه‌بین‌گری با مقاس ۱۳۰۰۰۰ تپه و‌راه‌های شبیه جهت و ارتقای از سطح دریای آن تهیه شد. در این تهیه‌ها، نقشه‌ها با توجه به تپه‌بین‌گری گونه‌های موجود در جنگل دارابکلا.
جدول ۴- معادلات الومتریک موجود برای اجزای گونه‌های مختلف (BR: براچئز، FL: برگ‌ها، CR: تاج)

<table>
<thead>
<tr>
<th>هنبع</th>
<th>واحد زیسته</th>
<th>واحد ارتفاع</th>
<th>واحد ارتفاع</th>
<th>کونه</th>
<th>ماده</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>ماده</th>
<th>b</th>
<th>c</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wang (2006)</td>
<td>۰/۴۲۲۹</td>
<td>ی/۸۴۸</td>
<td>log۱۰ y = a + b(log۱۰ DBH)</td>
<td>m</td>
<td>cm</td>
<td>g</td>
<td>BR</td>
<td>گردو</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wang (2006)</td>
<td>۰/۴۲۲۹</td>
<td>ی/۸۴۸</td>
<td>log۱۰ y = a + b(log۱۰ DBH)</td>
<td>m</td>
<td>cm</td>
<td>g</td>
<td>FL</td>
<td>گردو</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>De- Miguel et al (2014)</td>
<td>۰/۴۶۵۹</td>
<td>ی/۸۴۸</td>
<td>log۱۰ y = a + b(log۱۰ DBH)</td>
<td>m</td>
<td>cm</td>
<td>Kg</td>
<td>CR</td>
<td>پلوسی</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daryaey & Sohrabi, 2015</td>
<td>-</td>
<td>-</td>
<td>Y = h۱ DBH۳ H۳</td>
<td>m</td>
<td>cm</td>
<td>g</td>
<td>BR</td>
<td>شیردار</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daryaey & Sohrabi, 2015</td>
<td>-</td>
<td>-</td>
<td>Y = C۱ DBH۲ H۲</td>
<td>m</td>
<td>cm</td>
<td>g</td>
<td>FL</td>
<td>شیردار</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Johansson, 1999</td>
<td>-</td>
<td>-</td>
<td>Y = a. D۰۱</td>
<td>-</td>
<td>mm</td>
<td>Kg</td>
<td>BR</td>
<td>توسکا</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Johansson, 2000</td>
<td>-</td>
<td>-</td>
<td>Y = a. D۰۱</td>
<td>-</td>
<td>mm</td>
<td>Kg</td>
<td>FL</td>
<td>توسکا</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smill et al, 1983</td>
<td>-</td>
<td>-</td>
<td>lnY = a+b ln (DBH)</td>
<td>Cm</td>
<td>Kg</td>
<td>CR</td>
<td>پلات</td>
<td>بلندپانجره</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yuste et al, 2005</td>
<td>-</td>
<td>-</td>
<td>Y = a. D۰۱</td>
<td>-</td>
<td>Cm</td>
<td>Kg</td>
<td>BR</td>
<td>بلندپانجره</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parker et al, 1975</td>
<td>-</td>
<td>-</td>
<td>log۱۰ y = a + b* (log۱۰ (DBH))</td>
<td>-</td>
<td>Cm</td>
<td>g</td>
<td>BR</td>
<td>شترین</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parker et al, 1975</td>
<td>-</td>
<td>-</td>
<td>log۱۰ y = a + b* (log۱۰ (DBH))</td>
<td>-</td>
<td>Cm</td>
<td>g</td>
<td>FL</td>
<td>شترین</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شکل ۴- نقشه ارتفاع از سطح دریا
Figure 4. The map of elevation

شکل ۳- نقشه جهات جغرافیایی
Figure 3. The map of Aspect

شکل ۲- نقشه درصد شیب
Figure 2. The map of slope Percent
جدول ۵ - مساحت طبقات نقشه نمونه‌گذاری جنگل کاری

<table>
<thead>
<tr>
<th>طبقه</th>
<th>مساحت (هکتار)</th>
</tr>
</thead>
<tbody>
<tr>
<td>طبقه ۱</td>
<td>۷۴/۳۱۸۰</td>
</tr>
<tr>
<td>طبقه ۲</td>
<td>۷۹/۱۰۲۲۸</td>
</tr>
<tr>
<td>طبقه ۳</td>
<td>۵۳/۱۳۴۰۹</td>
</tr>
<tr>
<td>مجموع</td>
<td></td>
</tr>
</tbody>
</table>
برای تعیین حجم در هکتار هر گونه، پس از آماربرداری و اندازه‌گیری پارامترهای مورد نظر (قطر و ارتفاع) حجم هر قطعه نمونه و حجم این هکتار در قطعه نمونه مشخص شد و با احتساب میانگین حجم در هکتار قطعات نمونه، میانگین حجم در هکتار کل برای هر گونه مشخص شد (جدول 6). سپس با داشتن جرم حجمی گونه‌ها و زننده درختان در قطعات نمونه و در هکتار برای هر قطعه نمونه به دست آمد.

جدول 6- میانگین حجم در هکتار و جرم حجمی گونه‌های مختلف

Table 6. Average volume per hectare and density of different species

<table>
<thead>
<tr>
<th>میانگین حجم (سبککم/هکتار)</th>
<th>جرم حجمی گونه</th>
<th>گونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین حجم (سبککم/هکتار)</td>
<td>250</td>
<td>پیلت</td>
</tr>
<tr>
<td>310</td>
<td>تونسکا</td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>بلندپارو</td>
<td></td>
</tr>
<tr>
<td>512</td>
<td>گردو</td>
<td></td>
</tr>
<tr>
<td>392</td>
<td>بروسیا</td>
<td></td>
</tr>
<tr>
<td>360</td>
<td>شیراز</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>چندر</td>
<td></td>
</tr>
</tbody>
</table>

جدول 7- محاسبه مقدار کربن برای گونه‌های مختلف

Table 7. Calculating the carbon sequestrations of different species

<table>
<thead>
<tr>
<th>موجودی کربن (آن/هکتار)</th>
<th>زن تاج (آن/هکتار)</th>
<th>وزن ناه (آن/هکتار)</th>
<th>گونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین کربن (آن/هکتار)</td>
<td>282</td>
<td>213</td>
<td>پیلت</td>
</tr>
<tr>
<td>431</td>
<td>تونسکا</td>
<td></td>
<td></td>
</tr>
<tr>
<td>392</td>
<td>بلندپارو</td>
<td></td>
<td></td>
</tr>
<tr>
<td>306</td>
<td>گردو</td>
<td></td>
<td></td>
</tr>
<tr>
<td>297</td>
<td>بروسیا</td>
<td></td>
<td></td>
</tr>
<tr>
<td>232</td>
<td>شیراز</td>
<td></td>
<td></td>
</tr>
<tr>
<td>213</td>
<td>چندر</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

به منظور ارتقاء میزان درستی نشان‌دهنده جنگل کاری تهیه شده، نقاط برداشت شده در مناطق مختلف با قابلیت جنگل کاری به وسیله GPS با نقشه کهنه شده تطبیق داده شد و مشخص گردید که ۸۱٪ این نقاط با هم تطابق داشته‌اند.

برآورد میزان موجودی کربن به ازای هر هکتار جنگلی:

شکل ۰۷- نقشه کاربری جنگل‌کاری

Figure 10. The map of forest plantation

شکل ۰۸- نقشه واحد‌های همگن

Figure 11. The map of units homogeneous
سپس با استفاده از مدل‌های الگویکاری و وزن‌دهی در خروجی قطعات متغیرهای و وزن‌دهی در هکرات محاسبه شد و از مجموع وزن تنه و وزن پذیره کل روند زمانی در هر قطعه معنی به دست آمد. از فرض 50٪ وزن خشک محصول متغیر کره خشک شده می‌باشد در نهایت محصول کریم حس تا در طبقه نمونه محاسبه شد (جدول 7).

جدول 8- میزان کربن تولیدی قابل استفاده توسط گونه‌های مختلف

<table>
<thead>
<tr>
<th>کربن موجود</th>
<th>کربن مذکور (کریم)</th>
<th>مختلف محصولات</th>
<th>تکنیک</th>
<th>ضریب</th>
<th>خلاصه</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>19983</td>
<td>19983</td>
<td>19983</td>
<td>19983</td>
<td>19983</td>
<td>19983</td>
</tr>
<tr>
<td>19983</td>
<td>23425</td>
<td>12928</td>
<td>2095</td>
<td>8197</td>
<td>535</td>
</tr>
<tr>
<td>19983</td>
<td>357</td>
<td>357</td>
<td>357</td>
<td>357</td>
<td>357</td>
</tr>
<tr>
<td>19983</td>
<td>197</td>
<td>197</td>
<td>197</td>
<td>197</td>
<td>197</td>
</tr>
<tr>
<td>19983</td>
<td>8197</td>
<td>8197</td>
<td>8197</td>
<td>8197</td>
<td>8197</td>
</tr>
<tr>
<td>19983</td>
<td>535</td>
<td>535</td>
<td>535</td>
<td>535</td>
<td>535</td>
</tr>
</tbody>
</table>

کربن این گونه محصول 56 تا 274 درصد از هکرات دست آمد. می‌توان گفت که برای افزایش وزن حجمی می‌توان از این گونه‌ها استفاده کرد. افراد دارای محصولات مختلف از جنگل‌کاری به کار گرفته‌اند، با فاصله زمانی بین زمان تولید، واریه‌های مختلف محصولات را به کار می‌برند.

با توجه به این که برای افزایش وزن حجمی محصولات مختلف، باید از این گونه‌ها استفاده کرد. افراد دارای محصولات مختلف از جنگل‌کاری به کار گرفته‌اند، با فاصله زمانی بین زمان تولید، واریه‌های مختلف محصولات را به کار می‌برند.
شاخصی جهالی‌های ایران سال پنج‌ماه/ شماره دهم/ پاییز و زمستان ۱۳۹۶

منابع

Assessment of Ecological Capability and Estimation of Aboveground Biomass in Plantations Darabkola Forest

Maryam Niknejad¹, Asghar Fallah² and Soleiman Mohammadi Limaei³

1- Ph.D, Department of Forestry, Faculty of Natural Resources, Sari Agriculture Sciences and Natural Resources University, Iran. (Corresponding Author: maryamn012niknejad@yahoo.com)
2- Associate Professor, Department of Forestry, Faculty of Natural Resources, Sari Agriculture Sciences and Natural Resources University, Iran
3- Associate Professor, Department of Forestry, Faculty of Natural Resources, University of Guilan, Iran

Received: December 28, 2017 Accepted: February 6, 2018

Abstract

The forest plantation strategy is to do with the identification of the most appropriate zones and the areas that are most suitable for different species. However, the success of this strategy requires the precise determination of the species ecological demands and the evaluation of the land before the establishment of the plantation. The purpose of this study is to assess the ecological capability and estimate the aboveground biomass for the forest plantation in Darabkola forest, so, the species could be prioritized according to these objectives, and also for future forest plantation in the same. In this study, at first, the suitable zones for the forest plantation was identified using the SQL search function in Arc GIS 10.3 software interface. Then, the carbon sequestration in forest plantation (per hectare) was estimated using the measured parameters of trees and allometric equations. Results showed that, by simultaneously considering the mentioned objectives, Maple, Coliseum maple and Ash, were ranked as the most compatible species from the ecological compatibility point of view, and the highest level of the carbon stock was found for oak species. Therefore, these species are in priority for forest plantation in the region. Due to the fact that, the former forest plantation focused mainly on considering the ecological potential of a given species, the current study emphasized taking into account the multiple objectives for the future forest plantation. In other words, in addition to the ecological capability, other goals should be considered.

Keywords: Above-ground biomass, Ecological capability, Forest plantation, Geographic Information System